-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgcn.py
95 lines (81 loc) · 3.31 KB
/
gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import random
random.seed(0)
import numpy as np
np.random.seed(0)
import torch
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
torch.backends.cudnn.deterministic = True
import os.path as osp
import argparse
import torch.nn.functional as F
from torch_geometric.datasets import Planetoid
import torch_geometric.transforms as T
from torch_geometric.nn import GCNConv, ChebConv # noqa
from data_prepare import load_data
from feature_engineering import get_embedding
import pickle
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='cora')
args = parser.parse_args()
data = load_data(args.dataset, 0, transform=T.NormalizeFeatures())
if data.x is None:
data.x = get_embedding(args.dataset, data, 'onehot')
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = GCNConv(data.x.shape[1], 128, cached=False)
self.conv2 = GCNConv(128, int(max(data.y)) + 1, cached=False)
def forward(self, x, edge_index):
x = F.relu(self.conv1(x, edge_index))
x = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model, data = Net().to(device), data.to(device)
optimizer = torch.optim.Adam([
dict(params=model.conv1.parameters(), weight_decay=5e-4),
dict(params=model.conv2.parameters(), weight_decay=0)
], lr=0.01) # Only perform weight-decay on first convolution.
def train():
model.train()
optimizer.zero_grad()
if args.dataset == 'photo':
F.nll_loss(model(data.train_x, data.train_edge_index), data.train_y).backward()
else:
F.nll_loss(model(data.x, data.edge_index)[data.train_mask], data.y[data.train_mask]).backward()
optimizer.step()
@torch.no_grad()
def test():
model.eval()
if args.dataset == 'photo':
train_pred = model(data.train_x, data.train_edge_index).max(1)[1]
train_acc = train_pred.eq(data.train_y).sum().item() / data.train_x.shape[0]
val_pred = model(data.val_x, data.val_edge_index).max(1)[1]
val_acc = val_pred.eq(data.val_y).sum().item() / data.val_x.shape[0]
test_pred = model(data.test_x, data.test_edge_index).max(1)[1]
test_acc = test_pred.eq(data.test_y).sum().item() / data.test_x.shape[0]
accs = [train_acc, val_acc, test_acc]
else:
logits, accs = model(data.x, data.edge_index), []
for _, mask in data('train_mask', 'val_mask', 'test_mask'):
pred = logits[mask].max(1)[1]
acc = pred.eq(data.y[mask]).sum().item() / mask.sum().item()
accs.append(acc)
test_logits = logits[data.test_mask]
return accs, test_logits
all_test_accs = []
for run in range(10):
best_val_acc = test_acc = 0
for epoch in range(1, 500):
train()
(train_acc, val_acc, tmp_test_acc), z = test()
if val_acc > best_val_acc:
best_val_acc = val_acc
test_acc = tmp_test_acc
pickle.dump((z, data.y[data.test_mask]), open(f'embeddings/{args.dataset}_gcn.pt', 'wb'))
log = 'Epoch: {:03d}, Train: {:.4f}, Val: {:.4f}, Test: {:.4f}'
print(log.format(epoch, train_acc, best_val_acc, test_acc))
all_test_accs.append(test_acc)
print(np.mean(all_test_accs))
print(np.std(all_test_accs))