-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
274 lines (229 loc) · 12.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import torch
import os
from extracting_local_graph import LocalGraph
from torch.utils.data import DataLoader
import pickle
import argparse
import numpy as np
from maml import MAML
import time
import psutil
from memory_profiler import memory_usage
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
def collate(samples):
graphs_spt, labels_spt, graph_qry, labels_qry, center_spt, center_qry, nodeidx_spt, nodeidx_qry, support_graph_idx, query_graph_idx = map(
list, zip(*samples))
return graphs_spt, labels_spt, graph_qry, labels_qry, center_spt, center_qry, nodeidx_spt, nodeidx_qry, support_graph_idx, query_graph_idx
def main():
mem_usage = memory_usage(-1, interval=.5, timeout=1)
torch.manual_seed(222)
torch.cuda.manual_seed_all(222)
np.random.seed(222)
root = args.data_dir + 'data/'
print(args)
with open(root + 'results.txt', 'a') as f:
f.write(str(args) + '\n')
feat = np.load(root + 'features.npy', allow_pickle=True)
print('feature dimension: ', len(feat[0][0]))
with open(root + 'graph_dgl.pkl', 'rb') as f:
dgl_graph = pickle.load(f)
with open(root + 'label.pkl', 'rb') as f:
info = pickle.load(f)
labels_num = len(np.unique(np.array(list(info.values()))))
print('There are {} classes '.format(labels_num))
if len(feat.shape) == 2:
feat = [feat]
config = [('GraphConv', [feat[0].shape[1], args.hidden_dim])]
if args.h > 1:
config = config + [('GraphConv', [args.hidden_dim, args.hidden_dim])] * (args.h - 1)
config = config + [('Linear', [args.hidden_dim, labels_num])]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
maml = MAML(args, config).to(device)
tmp = filter(lambda x: x.requires_grad, maml.parameters())
num = sum(map(lambda x: np.prod(x.shape), tmp))
print(maml)
print('Total trainable tensors:', num)
max_acc = 0
db_train = []
db_val = []
db_test = []
for k_fold in range(10):
db_train.append(
LocalGraph(root, 'train_' + str(k_fold), info, n_way=args.n_way, k_shot=args.k_spt, k_query=args.k_qry,
batchsz=args.batchsz, args=args, adjs=dgl_graph, h=args.h))
db_val.append(
LocalGraph(root, 'val_' + str(k_fold), info, n_way=args.n_way, k_shot=args.k_spt, k_query=args.k_qry,
batchsz=100, args=args, adjs=dgl_graph, h=args.h))
db_test.append(
LocalGraph(root, 'test_' + str(k_fold), info, n_way=args.n_way, k_shot=args.k_spt, k_query=args.k_qry,
batchsz=100, args=args, adjs=dgl_graph, h=args.h))
print('------ Start Training ------')
acc_total = []
F1_total_sum = []
Recall_total_sum = []
Precision_total_sum = []
Sensitivity_total_sum = []
Specificity_total_sum = []
MCC_total_sum = []
total_start = time.time()
for k_fold in range(10):
print('------ ', k_fold + 1, 'fold ------')
if k_fold != 0:
maml = MAML(args, config).to(device)
s_start = time.time()
max_memory = 0
for epoch in range(args.epoch):
db = DataLoader(db_train[k_fold], args.task_num, shuffle=True, num_workers=args.num_workers,
pin_memory=True, collate_fn=collate)
s_f = time.time()
for step, (x_spt, y_spt, x_qry, y_qry, c_spt, c_qry, n_spt, n_qry, g_spt, g_qry) in enumerate(db):
nodes_len = 0
if step >= 1:
data_loading_time = time.time() - s_r
else:
data_loading_time = time.time() - s_f
s = time.time()
# x_spt: a list of #task_num tasks, where each task is a mini-batch of k-shot * n_way localgraphs
# y_spt: a list of #task_num lists of labels. Each list is of length k-shot * n_way int.
nodes_len += sum([sum([len(j) for j in i]) for i in n_spt])
accs = maml(x_spt, y_spt, x_qry, y_qry, c_spt, c_qry, n_spt, n_qry, g_spt, g_qry, feat)
max_memory = max(max_memory, float(psutil.virtual_memory().used / (1024 ** 3)))
if step % args.train_result_report_steps == 0:
print('Epoch:', epoch + 1, ' Step:', step, ' training acc:', str(accs[-1].tolist())[:5],
' time elapsed:', str(time.time() - s)[:5], ' data loading takes:',
str(data_loading_time)[:5], ' Memory usage:',
str(float(psutil.virtual_memory().used / (1024 ** 3)))[:5])
s_r = time.time()
# validation per epoch
db_v = DataLoader(db_val[k_fold], 1, shuffle=True, num_workers=args.num_workers, pin_memory=True,
collate_fn=collate)
accs_all_test = []
for x_spt, y_spt, x_qry, y_qry, c_spt, c_qry, n_spt, n_qry, g_spt, g_qry in db_v:
accs, _, _, _ = maml.finetunning(x_spt, y_spt, x_qry, y_qry, c_spt, c_qry, n_spt, n_qry, g_spt, g_qry,
feat)
accs_all_test.append(accs)
accs = np.array(accs_all_test).mean(axis=0).astype(np.float16)
print('Epoch:', epoch + 1, ' Val acc:', str(accs[-1])[:5])
if accs[-1] > max_acc:
max_acc = accs[-1]
db_t = DataLoader(db_test[k_fold], 1, shuffle=True, num_workers=args.num_workers, pin_memory=True,
collate_fn=collate)
accs_all_test = []
perform_para_all = []
precision_all = []
recall_all = []
f1 = []
specificity = []
mcc = []
test_start = time.time()
for x_spt, y_spt, x_qry, y_qry, c_spt, c_qry, n_spt, n_qry, g_spt, g_qry in db_t:
accs, per_para_i, taget_label, pre_label = maml.finetunning(x_spt, y_spt, x_qry, y_qry, c_spt, c_qry, n_spt,
n_qry, g_spt, g_qry, feat)
accs_all_test.append(accs)
perform_para_all.append(per_para_i)
accs = np.array(accs_all_test).mean(axis=0).astype(np.float16)
perform_para = np.array(perform_para_all).mean(axis=0).astype(np.float32)
test_end = str(time.time() - test_start)[:5]
for i in range(labels_num):
# precision
if perform_para[0][i] + perform_para[1][i] == 0:
precision_all.append(0)
else:
precision_all.append(perform_para[0][i] / (perform_para[0][i] + perform_para[1][i]))
# recall(sensitivity)
if perform_para[0][i] + perform_para[2][i] == 0:
recall_all.append(0)
else:
recall_all.append(perform_para[0][i] / (perform_para[0][i] + perform_para[2][i]))
# f1
if precision_all[i] + recall_all[i] == 0:
f1.append(0)
else:
f1.append((2 * precision_all[i] * recall_all[i]) / (precision_all[i] + recall_all[i]))
# specificity
if perform_para[3][i] + perform_para[1][i] == 0:
specificity.append(0)
else:
specificity.append(perform_para[3][i] / (perform_para[3][i] + perform_para[1][i]))
# MCC
if (perform_para[0][i] + perform_para[1][i]) == 0 or (perform_para[0][i] + perform_para[2][i]) == 0 \
or (perform_para[3][i] + perform_para[1][i]) == 0 or (perform_para[3][i] + perform_para[2][i]) == 0:
mcc.append(0)
else:
mcc.append((perform_para[0][i] * perform_para[3][i] - perform_para[1][i] * perform_para[2][i]) /
((perform_para[0][i] + perform_para[1][i]) * (perform_para[0][i] + perform_para[2][i]) * (
perform_para[3][i] + perform_para[1][i]) * (
perform_para[3][i] + perform_para[2][i])) ** 0.5)
precision = np.array(precision_all).mean()
recall = np.array(recall_all).mean()
f1 = np.array(f1).mean()
sensitivity = recall_all
print('Test acc:', str(accs[1])[:5])
print('Test Precision:', str(precision)[:5])
print('Test Recall:', str(recall)[:5])
print('Test F1:', str(f1)[:5])
print('Test Sensitivity:', sensitivity)
print('Test Specificity:', specificity)
print('Test MCC:', mcc)
print('Test Time:', test_end)
with open(root + 'results.txt', 'a') as f:
f.write('------' + str(k_fold + 1) + 'fold ------\n')
f.write('Test acc:' + str(accs[1])[:5] + '\n')
f.write('Test Precision:' + str(precision)[:5] + '\n')
f.write('Test Recall:' + str(recall)[:5] + '\n')
f.write('Test F1:' + str(f1)[:5] + '\n')
f.write('Test Sensitivity:' + str(sensitivity) + '\n')
f.write('Test Specificity:' + str(specificity) + '\n')
f.write('Test MCC:' + str(mcc) + '\n')
f.write('Test Max Momory:' + str(max_memory)[:5] + '\n')
f.write('Test Time:' + test_end + '\n')
f.write('One Epoch Time:' + str(time.time() - s_start)[:5] + '\n')
acc_total.append(float(str(accs[1])[:5]))
F1_total_sum.append(float(str(f1)[:5]))
Recall_total_sum.append(float(str(recall)[:5]))
Precision_total_sum.append(float(str(precision)[:5]))
Sensitivity_total_sum.append(sensitivity)
Specificity_total_sum.append(specificity)
MCC_total_sum.append(mcc)
print('One Epoch Time:', str(time.time() - s_start)[:5])
print('Max Momory:', str(max_memory)[:5])
print('Total Acc:', str(np.array(acc_total).mean())[:5])
print('Total Precision:', str(np.array(Precision_total_sum).mean())[:5])
print('Total Recall:', str(np.array(Recall_total_sum).mean())[:5])
print('Total F1:', str(np.array(F1_total_sum).mean())[:5])
print('Total Sensitivity:', str(np.array(Sensitivity_total_sum).mean(axis=0).astype(np.float32)))
print('Total Specificity:', str(np.array(Specificity_total_sum).mean(axis=0).astype(np.float32)))
print('Total MCC:', str(np.array(MCC_total_sum).mean(axis=0).astype(np.float32)))
print('Total Time:', str(time.time() - total_start)[:5])
with open(root + 'results.txt', 'a') as f:
f.write('------ Total Result ------\n')
f.write('Total Acc:' + str(np.array(acc_total).mean())[:5] + '\n')
f.write('Total Precision:' + str(np.array(Precision_total_sum).mean())[:5] + '\n')
f.write('Total Recall:' + str(np.array(Recall_total_sum).mean())[:5] + '\n')
f.write('Total F1:' + str(np.array(F1_total_sum).mean())[:5] + '\n')
f.write('Total Sensitivity:' + str(np.array(Sensitivity_total_sum).mean(axis=0).astype(np.float32)) + '\n')
f.write('Total Specificity:' + str(np.array(Specificity_total_sum).mean(axis=0).astype(np.float32)) + '\n')
f.write('Total MCC:' + str(np.array(MCC_total_sum).mean(axis=0).astype(np.float32)) + '\n')
f.write('Total Time:' + str(time.time() - total_start)[:5] + '\n')
if __name__ == '__main__':
argparser = argparse.ArgumentParser()
argparser.add_argument('--epoch', type=int, help='epoch number', default=15)
argparser.add_argument('--n_way', type=int, help='n way', default=5)
argparser.add_argument('--k_spt', type=int, help='k shot for support set', default=5)
argparser.add_argument('--k_qry', type=int, help='k shot for query set', default=10)
argparser.add_argument('--task_num', type=int, help='meta batch size, namely task num', default=4)
argparser.add_argument('--meta_lr', type=float, help='meta-level outer learning rate', default=1e-3)
argparser.add_argument('--update_lr', type=float, help='task-level inner update learning rate', default=1e-3)
argparser.add_argument('--update_step', type=int, help='task-level inner update steps', default=5)
argparser.add_argument('--update_step_test', type=int, help='update steps for finetunning', default=10)
argparser.add_argument('--input_dim', type=int, help='input feature dim', default=1)
argparser.add_argument('--hidden_dim', type=int, help='hidden dim', default=256)
argparser.add_argument("--data_dir", default='DATA_PATH/', type=str, required=False, help="The input data dir.")
argparser.add_argument("--val_result_report_steps", default=100, type=int, required=False, help="validation report")
argparser.add_argument("--train_result_report_steps", default=100, type=int, required=False, help="training report")
argparser.add_argument("--num_workers", default=0, type=int, required=False, help="num of workers")
argparser.add_argument("--batchsz", default=500, type=int, required=False, help="batch size")
argparser.add_argument("--h", default=1, type=int, required=False, help="neighborhood size")
argparser.add_argument('--sample_nodes', type=int, help='sample nodes if above this number of nodes', default=1000)
args = argparser.parse_args()
main()