forked from SMART-TTS/SMART-G2P
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
205 lines (167 loc) · 7.53 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from __future__ import print_function
import nltk
import numpy as np
from utils import dataset
dataset = dataset()
import hgtk
# will use nltk.pos_tag and s_tag (StanfordPOSTagger)
# tokenization will be done by nltk.word_tokenize
def read_data(filename):
with open(filename, 'r') as f:
data = [line.split('\t') for line in f.read().splitlines()]
return data
train_source = [line[0] for line in dataset]
train_target = ['\t'+hgtk.text.decompose(line[1])+'\n' for line in dataset]
input_characters = set()
for line in train_source:
for char in line:
if char not in input_characters:
input_characters.add(char)
target_characters = set()
for line in train_target:
for char in line:
if char not in target_characters:
target_characters.add(char)
######
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
#config = tf.ConfigProto()
#config.gpu_options.per_process_gpu_memory_fraction = 0.01
#set_session(tf.Session(config=config))
from keras.layers.core import Dense, Dropout, Activation, Flatten, Reshape
from keras.models import Model
from keras.layers import Input, LSTM, Dense
from keras.layers import TimeDistributed
from keras.layers import Bidirectional
import string
latent_dim = 32 # Latent dimensionality of the encoding space.
num_samples = len(train_source) # Number of samples to train on.
input_characters = sorted(list(input_characters))
target_characters = sorted(list(target_characters))
num_encoder_tokens = len(input_characters)
num_decoder_tokens = len(target_characters)
max_encoder_seq_length = max([len(txt) for txt in train_source])
max_decoder_seq_length = max([len(txt) for txt in train_target])
input_token_index = input_characters
target_token_index = target_characters
input_token_index = dict(
[(char, i) for i, char in enumerate(input_characters)])
target_token_index = dict(
[(char, i) for i, char in enumerate(target_characters)])
from keras.layers.core import Dense, Dropout, Activation, Flatten, Reshape
from keras import layers
########################################
encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder_bi = (Bidirectional(LSTM(latent_dim, return_sequences=True)))
encoder_seq = LSTM(latent_dim, return_sequences=True, return_state=True)
encoder = LSTM(latent_dim, return_state=True)
encoder_output0, state_h0,state_c0= encoder_seq(encoder_bi(encoder_inputs))
encoder_outputs, state_h, state_c = encoder(encoder_output0)
# We discard `encoder_outputs` and only keep the states.
encoder_states0= [state_h0, state_c0]
encoder_states = [state_h, state_c]
# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None, num_decoder_tokens))
# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the
# return states in the training model, but we will use them in inference.
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, decoder_state_h, decoder_state_c = decoder_lstm(decoder_inputs, initial_state = encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
############ INFERENCE
test_source = train_source[-100:]
test_target = train_target[-100:]
encoder_input_test_data = np.zeros(
(len(test_source), max_encoder_seq_length, num_encoder_tokens),
dtype='float32')
decoder_input_test_data = np.zeros(
(len(test_source), max_decoder_seq_length, num_decoder_tokens),
dtype='float32')
decoder_target_test_data = np.zeros(
(len(test_source), max_decoder_seq_length, num_decoder_tokens),
dtype='float32')
for i, (test_source_utt, test_target_utt) in enumerate(zip(test_source, test_target)):
for t, char in enumerate(test_source_utt):
if char in input_token_index:
encoder_input_test_data[i, -len(test_source_utt)+t, input_token_index[char]] = 1.
for t, char in enumerate(test_target_utt):
if char in target_token_index:
# decoder_target_data is ahead of decoder_input_data by one timestep
decoder_input_test_data[i, t, target_token_index[char]] = 1.
if t > 0:
# decoder_target_data will be ahead by one timestep
# and will not include the start character.
decoder_target_test_data[i, t - 1, target_token_index[char]] = 1.
from keras.models import load_model
model.load_weights('model/enko_seq2seq_280.hdf5')
#model = load_model('model/enko_seq2seq_280.hdf5')
# Next: inference mode (sampling).
# Here's the drill:
# 1) encode input and retrieve initial decoder state
# 2) run one step of decoder with this initial state
# and a "start of sequence" token as target.
# Output will be the next target token
# 3) Repeat with the current target token and current states
# Define sampling models
from keras import layers
encoder_model = Model(encoder_inputs, encoder_states)
decoder_state_input_h = Input(shape=(latent_dim,))
decoder_state_input_c = Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, d_state_h, d_state_c = decoder_lstm(
decoder_inputs, initial_state= decoder_states_inputs)
decoder_states = [d_state_h, d_state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model(
[decoder_inputs] + decoder_states_inputs,
[decoder_outputs] + decoder_states)
reverse_input_token_index = input_characters
reverse_target_token_index = target_characters
# Reverse-lookup token index to decode sequences back to
# something readable.
reverse_input_char_index = dict(
(i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict(
(i, char) for char, i in target_token_index.items())
def decode_sequence(input_seq):
# Encode the input as state vectors.
states_value = encoder_model.predict(input_seq)
# Generate empty target sequence of length 1.
target_seq = np.zeros((1, 1, num_decoder_tokens))
# Populate the first character of target sequence with the start character.
target_seq[0, 0, target_token_index['\t']] = 1.
# Sampling loop for a batch of sequences
# (to simplify, here we assume a batch of size 1).
stop_condition = False
decoded_sentence = ''
while not stop_condition:
output_tokens, h, c = decoder_model.predict(
[target_seq] + states_value)
# Sample a token
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sampled_char = reverse_target_char_index[sampled_token_index]
decoded_sentence += sampled_char
# Exit condition: either hit max length
# or find stop character.
if (sampled_char == '\n' or
len(decoded_sentence) > max_decoder_seq_length):
stop_condition = True
# Update the target sequence (of length 1).
target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[0, 0, sampled_token_index] = 1.
# Update states
states_value = [h, c]
return decoded_sentence
def make_seq(s):
encoder_input_test_temp = np.zeros((1, max_encoder_seq_length, num_encoder_tokens), dtype='float32')
for t, char in enumerate(s):
if char in input_token_index:
encoder_input_test_temp[0, -len(s)+t, input_token_index[char]] = 1.
return encoder_input_test_temp
def return_trans(s):
input_seq = make_seq(s)
decoded_sentence = decode_sequence(input_seq)[:-1]
return hgtk.text.compose(decoded_sentence)