forked from ahmedfgad/GeneticAlgorithmPython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
63 lines (49 loc) · 2.84 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import pygad
import numpy
"""
Given the following function:
y = f(w1:w6) = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + 6wx6
where (x1,x2,x3,x4,x5,x6)=(4,-2,3.5,5,-11,-4.7) and y=44
What are the best values for the 6 weights (w1 to w6)? We are going to use the genetic algorithm to optimize this function.
"""
function_inputs = [4,-2,3.5,5,-11,-4.7] # Function inputs.
desired_output = 44 # Function output.
def fitness_func(solution, solution_idx):
output = numpy.sum(solution*function_inputs)
fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
return fitness
num_generations = 100 # Number of generations.
num_parents_mating = 10 # Number of solutions to be selected as parents in the mating pool.
sol_per_pop = 20 # Number of solutions in the population.
num_genes = len(function_inputs)
last_fitness = 0
def on_generation(ga_instance):
global last_fitness
print("Generation = {generation}".format(generation=ga_instance.generations_completed))
print("Fitness = {fitness}".format(fitness=ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1]))
print("Change = {change}".format(change=ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1] - last_fitness))
last_fitness = ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1]
ga_instance = pygad.GA(num_generations=num_generations,
num_parents_mating=num_parents_mating,
sol_per_pop=sol_per_pop,
num_genes=num_genes,
fitness_func=fitness_func,
on_generation=on_generation)
# Running the GA to optimize the parameters of the function.
ga_instance.run()
ga_instance.plot_fitness()
# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution(ga_instance.last_generation_fitness)
print("Parameters of the best solution : {solution}".format(solution=solution))
print("Fitness value of the best solution = {solution_fitness}".format(solution_fitness=solution_fitness))
print("Index of the best solution : {solution_idx}".format(solution_idx=solution_idx))
prediction = numpy.sum(numpy.array(function_inputs)*solution)
print("Predicted output based on the best solution : {prediction}".format(prediction=prediction))
if ga_instance.best_solution_generation != -1:
print("Best fitness value reached after {best_solution_generation} generations.".format(best_solution_generation=ga_instance.best_solution_generation))
# Saving the GA instance.
filename = 'genetic' # The filename to which the instance is saved. The name is without extension.
ga_instance.save(filename=filename)
# Loading the saved GA instance.
loaded_ga_instance = pygad.load(filename=filename)
loaded_ga_instance.plot_fitness()