forked from rrobinett/wsprdaemon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
derived_calc.py
executable file
·144 lines (133 loc) · 5.83 KB
/
derived_calc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# -*- coding: utf-8 -*-
# April 2020 Gwyn Griffiths. Based on the add_azi used in the ts-wspr-scraper.sh script
# Takes receiver and transmitter Maidenhead locators and calculates azimuths at tx and rx, lats and lons, distance and vertes lat and lon
# Needs the two locators and frequency as arguments. If spot_grid="none" puts absent data in the calculated fields.
# The operating band is derived from the frequency, 60 and 60eu and 80 and 80eu are reported as 60 and 80
# Miles are not copied to the azi-appended file
# In the script the following lines preceed this code and there's an EOF added at the end
# G3ZIL python script that gets copied into /tmp/derived_calc.py and is run there
import numpy as np
from numpy import genfromtxt
import sys
import csv
absent_data=-999.0
# define function to convert 4 or 6 character Maidenhead locator to lat and lon in degrees
def loc_to_lat_lon (locator):
locator=locator.strip()
decomp=list(locator)
lat=(((ord(decomp[1])-65)*10)+(ord(decomp[3])-48)+(1/2)-90)
lon=(((ord(decomp[0])-65)*20)+((ord(decomp[2])-48)*2)+(1)-180)
if len(locator)==6:
if (ord(decomp[4])) >88: # check for case of the third pair, likely to be lower case
ascii_base=96
else:
ascii_base=64
lat=lat-(1/2)+((ord(decomp[5])-ascii_base)/24)-(1/48)
lon=lon-(1)+((ord(decomp[4])-ascii_base)/12)-(1/24)
return(lat, lon)
# get the rx_locator, tx_locator and frequency from the command line arguments
tx_locator=sys.argv[1]
print(tx_locator)
rx_locator=sys.argv[2]
print(rx_locator)
frequency=sys.argv[3]
print(tx_locator, rx_locator, frequency)
# open file for output as a csv file, to which we will put the calculated values
with open("derived_azi.csv", "w") as out_file:
out_writer=csv.writer(out_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
# loop to calculate azimuths at tx and rx (wsprnet only does the tx azimuth)
if tx_locator!="none":
(tx_lat,tx_lon)=loc_to_lat_lon (tx_locator) # call function to do conversion, then convert to radians
phi_tx_lat = np.radians(tx_lat)
lambda_tx_lon = np.radians(tx_lon)
(rx_lat,rx_lon)=loc_to_lat_lon (rx_locator) # call function to do conversion, then convert to radians
phi_rx_lat = np.radians(rx_lat)
lambda_rx_lon = np.radians(rx_lon)
delta_phi = (phi_tx_lat - phi_rx_lat)
delta_lambda=(lambda_tx_lon-lambda_rx_lon)
# calculate azimuth at the rx
y = np.sin(delta_lambda) * np.cos(phi_tx_lat)
x = np.cos(phi_rx_lat)*np.sin(phi_tx_lat) - np.sin(phi_rx_lat)*np.cos(phi_tx_lat)*np.cos(delta_lambda)
rx_azi = (np.degrees(np.arctan2(y, x))) % 360
# calculate azimuth at the tx
p = np.sin(-delta_lambda) * np.cos(phi_rx_lat)
q = np.cos(phi_tx_lat)*np.sin(phi_rx_lat) - np.sin(phi_tx_lat)*np.cos(phi_rx_lat)*np.cos(-delta_lambda)
tx_azi = (np.degrees(np.arctan2(p, q))) % 360
# calculate the vertex, the lat lon at the point on the great circle path nearest the nearest pole, this is the highest latitude on the path
# no need to calculate special case of both transmitter and receiver on the equator, is handled OK
# Need special case for any meridian, where vertex longitude is the meridian longitude and the vertex latitude is the lat nearest the N or S pole
if tx_lon==rx_lon:
v_lon=tx_lon
v_lat=max([tx_lat, rx_lat], key=abs)
else:
v_lat=np.degrees(np.arccos(np.sin(np.radians(rx_azi))*np.cos(phi_rx_lat)))
if v_lat>90.0:
v_lat=180-v_lat
if rx_azi<180:
v_lon=((rx_lon+np.degrees(np.arccos(np.tan(phi_rx_lat)/np.tan(np.radians(v_lat)))))+360) % 360
else:
v_lon=((rx_lon-np.degrees(np.arccos(np.tan(phi_rx_lat)/np.tan(np.radians(v_lat)))))+360) % 360
if v_lon>180:
v_lon=-(360-v_lon)
# now test if vertex is not on great circle track, if so, lat/lon nearest pole is used
if v_lon < min(tx_lon, rx_lon) or v_lon > max(tx_lon, rx_lon):
# this is the off track case
v_lat=max([tx_lat, rx_lat], key=abs)
if v_lat==tx_lat:
v_lon=tx_lon
else:
v_lon=rx_lon
# now calculate the short path great circle distance
a=np.sin(delta_phi/2)*np.sin(delta_phi/2)+np.cos(phi_rx_lat)*np.cos(phi_tx_lat)*np.sin(delta_lambda/2)*np.sin(delta_lambda/2)
c=2*np.arctan2(np.sqrt(a), np.sqrt(1-a))
km=6371*c
else:
v_lon=absent_data
v_lat=absent_data
tx_lon=absent_data
tx_lat=absent_data
rx_lon=absent_data
rx_lat=absent_data
rx_azi=absent_data
tx_azi=absent_data
km=absent_data
# end of list of absent data values for where tx_locator = "none"
# derive the band in metres (except 70cm and 23cm reported as 70 and 23) from the frequency
band=9999
freq=int(10*float(frequency))
if freq==1:
band=2200
if freq==4:
band=630
if freq==18:
band=160
if freq==35:
band=80
if freq==52 or freq==53:
band=60
if freq==70:
band=40
if freq==101:
band=30
if freq==140:
band=20
if freq==181:
band=17
if freq==210:
band=15
if freq==249:
band=12
if freq==281:
band=10
if freq==502:
band=6
if freq==700:
band=4
if freq==1444:
band=2
if freq==4323:
band=70
if freq==12965:
band=23
# output the original data, except for pwr in W and miles, and add lat lon at tx and rx, azi at tx and rx, vertex lat lon and the band
out_writer.writerow([band, "%.0f" % (km), "%.0f" % (rx_azi), "%.3f" % (rx_lat), "%.3f" % (rx_lon), "%.0f" % (tx_azi), "%.1f" % (tx_lat), "%.1f" % (tx_lon), "%.3f" % (v_lat), "%.3f" % (v_lon)])