forked from dessa-oss/DeepFake-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
138 lines (107 loc) · 5.13 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import cv2
import torch
import numpy as np
from pathlib import Path
import matplotlib.pyplot as plt
import foundations
def get_boundingbox(face, width, height, scale=1.3, minsize=None):
x1 = face.left()
y1 = face.top()
x2 = face.right()
y2 = face.bottom()
size_bb = int(max(x2 - x1, y2 - y1) * scale)
if minsize:
if size_bb < minsize:
size_bb = minsize
center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2
# Check for out of bounds, x-y top left corner
x1 = max(int(center_x - size_bb // 2), 0)
y1 = max(int(center_y - size_bb // 2), 0)
# Check for too big bb size for given x, y
size_bb = min(width - x1, size_bb)
size_bb = min(height - y1, size_bb)
return x1, y1, size_bb
def load_and_preprocess_image(image_filename, output_image_size, face_detector):
image = cv2.imread(image_filename)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
cropped_image = get_face_crop(face_detector, image)
if cropped_image is None:
return None
resized_image = cv2.resize(cropped_image, (output_image_size, output_image_size))
return resized_image
def get_face_crop(face_detector, image):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
faces = face_detector(gray, 1)
height, width = image.shape[:2]
if len(faces) == 0:
return None
else:
face = faces[0]
x, y, size = get_boundingbox(face, width, height)
cropped_face = image[y:y + size, x:x + size]
return cropped_face
def visualize_metrics(records, extra_metric, name):
fig, axes = plt.subplots(nrows=1, ncols=4, figsize=(15, 6))
axes[0].plot(list(range(len(records.train_losses))), records.train_losses, label='train')
axes[0].plot(list(range(len(records.train_losses_wo_dropout))), records.train_losses_wo_dropout, label='train w/o dropout')
axes[0].plot(list(range(len(records.base_val_losses))), records.base_val_losses, label='base_val')
axes[0].plot(list(range(len(records.augment_val_losses))), records.augment_val_losses, label='augment_val')
axes[0].set_title('loss')
axes[0].legend()
axes[1].plot(list(range(len(records.train_accs))), records.train_accs, label='train')
axes[1].plot(list(range(len(records.train_accs_wo_dropout))), records.train_accs_wo_dropout, label='train w/o dropout')
axes[1].plot(list(range(len(records.base_val_accs))), records.base_val_accs, label='base_val')
axes[1].plot(list(range(len(records.augment_val_accs))), records.augment_val_accs, label='augment_val')
axes[1].axhline(y=0.5, color='g', ls='--')
axes[1].axhline(y=0.667, color='r', ls='--')
axes[1].set_title('acc')
axes[1].legend()
axes[2].plot(list(range(len(records.train_custom_metrics))), records.train_custom_metrics, label='train')
axes[2].plot(list(range(len(records.train_custom_metrics_wo_dropout))), records.train_custom_metrics_wo_dropout, label='train w/o dropout')
axes[2].plot(list(range(len(records.base_val_custom_metrics))), records.base_val_custom_metrics, label='base_val')
axes[2].plot(list(range(len(records.augment_val_custom_metrics))), records.augment_val_custom_metrics, label='augment_val')
axes[2].axhline(y=0.5, color='g', ls='--')
axes[2].axhline(y=0.5, color='r', ls='--')
axes[2].set_title(f'{extra_metric.__name__}')
axes[2].legend()
axes[3].plot(list(range(len(records.lrs))), records.lrs)
_ = axes[3].set_title('lr')
plt.tight_layout()
plt.savefig(name, format='png')
def display_predictions_on_image(model, precomputed_cached_path, val_iter, name):
# val
model.eval()
data = next(val_iter)
inputs = data['image']
labels = data['label'].view(-1)
filenames = data['filename']
inputs = inputs.cuda(device=0)
labels = labels.cuda(device=0)
with torch.no_grad():
outputs = model(inputs)
outputs_predicbilty = torch.nn.functional.softmax(outputs, dim=1)
assert len(outputs_predicbilty) == len(outputs), f'proba shape: {len(outputs_predicbilty)}'
_, predicted = torch.max(outputs.data, 1)
nrows = int(len(inputs) ** 0.5)
ncols = int(np.ceil(len(inputs) / nrows))
fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(30, 40))
step = 0
for i in range(nrows):
for j in range(ncols):
image_id = Path(filenames[step]).stem
face_crop = precomputed_cached_path / f'processed_{image_id}.npy'
face_crop = np.load(face_crop)
axes[i, j].set_title(f'{outputs_predicbilty[step][0]:.2f},{outputs_predicbilty[step][1]:.2f}|{predicted[step]}|{labels[step]}')
axes[i, j].imshow(face_crop)
step += 1
if step == len(inputs):
break
plt.title('predicted_proba real, fake | prediction | label (0: real 1: fake)')
plt.tight_layout()
plt.savefig(name, format='png')
def parse_and_override_params(params):
data_dict = {'base': 0, 'augment': 1, 'both': 2}
parsed_params = params.copy()
parsed_params['train_data'] = data_dict[params['train_data']]
foundations.log_params(parsed_params)
return data_dict