Skip to content

Commit e84dccb

Browse files
style: format code with Autopep8, Black, ClangFormat, dotnet-format, Go fmt, Gofumpt, isort, PHP CS Fixer, Prettier, RuboCop, Rustfmt, Scalafmt, StandardJS, StandardRB and Yapf
This commit fixes the style issues introduced in e8c6c5d according to the output from Autopep8, Black, ClangFormat, dotnet-format, Go fmt, Gofumpt, isort, PHP CS Fixer, Prettier, RuboCop, Rustfmt, Scalafmt, StandardJS, StandardRB and Yapf. Details: None
1 parent e8c6c5d commit e84dccb

File tree

1 file changed

+19
-13
lines changed

1 file changed

+19
-13
lines changed

generate_recommendations.py

Lines changed: 19 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -2,42 +2,48 @@
22
from sklearn.metrics.pairwise import cosine_similarity
33

44
# Load user data
5-
user_data = pd.read_csv('user_data.csv')
5+
user_data = pd.read_csv("user_data.csv")
66

77
# Load service data
8-
service_data = pd.read_csv('service_data.csv')
8+
service_data = pd.read_csv("service_data.csv")
99

1010
# Merge user and service data
11-
merged_data = pd.merge(user_data, service_data, on='service_id')
11+
merged_data = pd.merge(user_data, service_data, on="service_id")
1212

1313
# Create user-service matrix
14-
user_service_matrix = merged_data.pivot_table(index='user_id', columns='service_id', values='rating')
14+
user_service_matrix = merged_data.pivot_table(index="user_id",
15+
columns="service_id",
16+
values="rating")
1517

1618
# Calculate similarity between users
1719
user_similarity = cosine_similarity(user_service_matrix)
1820

21+
1922
# Function to generate recommendations for a user
2023
def generate_recommendations(user_id, top_n=5):
2124
# Get index of the user
2225
user_index = user_service_matrix.index.get_loc(user_id)
23-
26+
2427
# Calculate similarity scores with other users
2528
similarity_scores = user_similarity[user_index]
26-
29+
2730
# Get top similar users
28-
top_similar_users = similarity_scores.argsort()[:-top_n-1:-1]
29-
31+
top_similar_users = similarity_scores.argsort()[:-top_n - 1:-1]
32+
3033
# Get services rated by similar users
31-
services_rated_by_similar_users = user_service_matrix.iloc[top_similar_users].dropna(axis=1)
32-
34+
services_rated_by_similar_users = user_service_matrix.iloc[
35+
top_similar_users].dropna(axis=1)
36+
3337
# Calculate average rating for each service
3438
service_avg_ratings = services_rated_by_similar_users.mean()
35-
39+
3640
# Sort services based on average ratings
37-
recommended_services = service_avg_ratings.sort_values(ascending=False)[:top_n]
38-
41+
recommended_services = service_avg_ratings.sort_values(
42+
ascending=False)[:top_n]
43+
3944
return recommended_services
4045

46+
4147
# Generate recommendations for a user
4248
user_id = 1
4349
recommendations = generate_recommendations(user_id, top_n=5)

0 commit comments

Comments
 (0)