forked from graphdeco-inria/gaussian-splatting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvis.py
327 lines (283 loc) · 10.9 KB
/
vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
#!/usr/bin/env python3
# Author: Armit
# Create Time: 2024/04/15
from copy import deepcopy
from pprint import pprint
from time import time
from argparse import ArgumentParser
from traceback import print_exc, format_exc
from typing import *
import tkinter as tk
import tkinter.ttk as ttk
import torch
from torch import Tensor
import torchvision.transforms.functional as TF
from torchvision.utils import make_grid
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.figure import Figure
from matplotlib.axes import Axes
from matplotlib.backends.backend_agg import FigureCanvasAgg
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.backends._backend_tk import NavigationToolbar2Tk
from modules.model import GaussianModel_Neural
from modules.hijack import hijack_feature_encoders ; hijack_feature_encoders()
from modules.lpipsPyTorch import LPIPS
from modules.utils.loss_utils import psnr, ssim
from modules.utils.general_utils import ImageState
from render import *
torch.backends.cudnn.benchmark = True
# camera center shift
CAM_CENTER_LIM = 10
WINDOW_TITLE = '3D-GS Viewer'
WINDOW_SIZE = (912, 860)
FIG_SIZE = 4
FIG_DPI = 400
HIST_BINS = 48
def timer(fn):
def wrapper(*args, **kwargs):
start = time()
r = fn(*args, **kwargs)
end = time()
print(f'[Timer]: {fn.__name__} took {end - start:.3f}s')
return r
return wrapper
COLOR_PALETTES = {
1: ['grey'],
3: ['r', 'g', 'b'],
4: ['r', 'g', 'b', 'yellow'],
}
@timer
def make_img_hist(X:Tensor) -> Tensor:
if len(X.shape) == 2: X = X.unsqueeze(dim=0)
C, H, W = X.shape
X = X.cpu().flatten(start_dim=1).numpy()
colors = COLOR_PALETTES[C]
fig: Figure = plt.figure()
ax = fig.gca()
for i, c in enumerate(colors):
ax.hist(X[i], alpha=0.5, color=c, bins=HIST_BINS, range=(0.0, 1.0))
ax.axis('off')
fig.tight_layout()
cvs: FigureCanvasAgg = fig.canvas
cvs.draw()
im = np.frombuffer(cvs.tostring_rgb(), dtype=np.uint8).reshape(cvs.get_width_height()[::-1] + (3,))
plt.close(fig)
X_hist = torch.from_numpy(im).permute(2, 0, 1).div(255)
return TF.resize(X_hist, (H, W), interpolation=TF.InterpolationMode.NEAREST)
class App:
def __init__(self, args, scene:Scene, render_func:Callable):
self.args = args
self.scene = scene
self.hp = scene.hp
self.morph = self.hp.morph
self.vp_cams = scene.get_train_cameras()
if isinstance(scene.gaussians, GaussianModel_Neural):
scene.gaussians.cuda()
self.render_func = lambda vp_cam, pc=scene.gaussians, scale=1.0: render_func(pc, vp_cam, scene.background, scale)
if args.show_metrics:
self.lpips = LPIPS(net_type='vgg').cuda()
self.setup_gui()
self.setup_inits()
try:
self.wnd.mainloop()
except KeyboardInterrupt:
self.wnd.quit()
except: print_exc()
def setup_inits(self):
self.sc_vp_cam.config(to=len(self.vp_cams)-1)
for sc in self.sc_embed:
sc.config(to=len(self.vp_cams)-1)
self.refresh(vp_cam_chg=True)
print('>> Ready!')
def setup_gui(self):
# window
wnd = tk.Tk()
W, H = wnd.winfo_screenwidth(), wnd.winfo_screenheight()
w, h = WINDOW_SIZE
wnd.geometry(f'{w}x{h}+{(W-w)//2}+{(H-h)//2}')
#wnd.resizable(False, False)
wnd.title(WINDOW_TITLE)
wnd.protocol('WM_DELETE_WINDOW', wnd.quit)
self.wnd = wnd
# top: controls
frm1 = ttk.Frame(wnd)
frm1.pack(side=tk.TOP, anchor=tk.N, expand=tk.YES, fill=tk.X)
if True:
frm11 = ttk.LabelFrame(frm1, text='Viewpoint Camera')
frm11.pack(side=tk.TOP, anchor=tk.N, expand=tk.YES, fill=tk.X)
if True:
self.var_vp_cam = tk.IntVar(wnd)
sc = tk.Scale(frm11, command=lambda _: self.refresh(vp_cam_chg=True), variable=self.var_vp_cam, orient=tk.HORIZONTAL, from_=0, to=10, resolution=1, tickinterval=20)
sc.pack(side=tk.TOP, expand=tk.YES, fill=tk.X)
self.sc_vp_cam = sc
frm12 = ttk.LabelFrame(frm1, text='Scaling Modifier')
frm12.pack(side=tk.TOP, anchor=tk.N, expand=tk.YES, fill=tk.X)
if True:
self.var_scale = tk.DoubleVar(wnd, 1.0)
sc = tk.Scale(frm12, command=self._refresh, variable=self.var_scale, orient=tk.HORIZONTAL, from_=0.01, to=1.25, resolution=0.02, tickinterval=0.1)
sc.pack(side=tk.TOP, expand=tk.YES, fill=tk.X)
frm13 = ttk.LabelFrame(frm1, text='Camera-Center Shifter')
frm13.pack(side=tk.TOP, anchor=tk.N, expand=tk.YES, fill=tk.X) if self.morph in ['mlp_gs', 'cd_gs'] else None
if True:
self.var_cam_center = [tk.DoubleVar(wnd) for i in range(3)]
for var in self.var_cam_center:
sc = tk.Scale(frm13, command=self._refresh, variable=var, orient=tk.HORIZONTAL, from_=-CAM_CENTER_LIM, to=CAM_CENTER_LIM, resolution=0.1, tickinterval=1)
sc.pack(side=tk.LEFT, expand=tk.YES, fill=tk.X)
frm14 = ttk.LabelFrame(frm1, text='Embedding Replacer')
frm14.pack(side=tk.TOP, anchor=tk.N, expand=tk.YES, fill=tk.X) if self.morph in ['cd_gs', 'gs_w'] else None
if True:
n_embed = len(self.scene.gaussians.embeddings) if isinstance(self.scene.gaussians, GaussianModel_Neural) else 0
self.var_embed = [tk.IntVar(wnd) for i in range(n_embed)]
self.sc_embed: List[tk.Scale] = []
for var in self.var_embed:
sc = tk.Scale(frm14, command=self._refresh, variable=var, orient=tk.HORIZONTAL, from_=0, to=100, resolution=1, tickinterval=50)
sc.pack(side=tk.LEFT, expand=tk.YES, fill=tk.X)
self.sc_embed.append(sc)
# middle: render
frm2 = ttk.Frame(wnd)
frm2.pack(expand=tk.YES, fill=tk.BOTH)
if True:
fig = plt.figure(figsize=(FIG_SIZE, FIG_SIZE), dpi=FIG_DPI)
fig.tight_layout()
ax: Axes = fig.gca()
cvs = FigureCanvasTkAgg(fig, frm2)
cvstk = cvs.get_tk_widget()
cvstk.pack(expand=tk.YES, fill=tk.BOTH)
toolbar = NavigationToolbar2Tk(cvs, frm2, pack_toolbar=False)
toolbar.update()
toolbar.pack(side=tk.BOTTOM, fill=tk.X)
self.fig, self.ax, self.cvs = fig, ax, cvs
# bottom: status
frm3 = ttk.Frame(wnd)
frm3.pack(side=tk.BOTTOM, anchor=tk.S, expand=tk.YES, fill=tk.X)
if True:
var = tk.StringVar(wnd)
self.var_info = var
lbl = ttk.Label(frm3, textvariable=var)
lbl.pack(expand=tk.YES, fill=tk.X)
def _refresh(self, *args, vp_cam_chg:bool=False):
return self.refresh(vp_cam_chg)
@torch.inference_mode()
@timer
def refresh(self, vp_cam_chg:bool=False):
idx = self.var_vp_cam.get()
vp_cam = vp_cam_original = self.vp_cams[idx]
scale = self.var_scale.get()
# hijack vp_cam
if self.morph in ['mlp_gs', 'cd_gs']:
vp_cam = deepcopy(vp_cam)
if vp_cam_chg:
for i, var in enumerate(self.var_cam_center):
var.set(vp_cam.camera_center[i].item())
else:
for i, var in enumerate(self.var_cam_center):
vp_cam.camera_center[i] = var.get()
if self.morph in ['cd_gs', 'gs_w']:
if vp_cam is vp_cam_original: vp_cam = deepcopy(vp_cam)
if vp_cam_chg:
for i, var in enumerate(self.var_embed):
var.set(vp_cam.uid)
vp_cam.uid = [var.get() for var in self.var_embed]
# gt
if self.morph == 'if_gs':
from modules.morphs.if_gs.camera import Camera as Camera_if_gs
assert isinstance(vp_cam, Camera_if_gs)
gt = vp_cam.gt_image.cuda()
else:
gt = vp_cam.image.cuda() # [C, H, W]
# render
if self.morph == 'if_gs':
from modules.morphs.if_gs.scene import Scene as Scene_if_gs
assert isinstance(self.scene, Scene_if_gs)
rendered_set = []
for freq_idx in range(self.scene.gaussians.n_gaussians):
gaussian = self.scene.activate_gaussian(freq_idx).cuda()
render_pkg = self.render_func(vp_cam, pc=gaussian, scale=scale)
rendered_set.append(render_pkg['render'].clamp_(0, 1))
else:
render_pkg = self.render_func(vp_cam, scale=scale)
if self.morph == 'cd_gs':
from modules.morphs.cd_gs.render import mix_image
rendered_set = render_pkg['render']
rendered: Tensor = mix_image(rendered_set).clamp_(0, 1)
else:
rendered: Tensor = render_pkg['render'].clamp_(0, 1)
imgs = [img.cpu() for img in [*locals().get('rendered_set', []), rendered, gt]]
img_hists = [make_img_hist(img) for img in imgs] if args.show_histogram else []
# render (aux.)
if self.morph == 'gs_w':
occlusions = rendered['occlusions']
if self.morph == 'dev':
img_state = rendered['img_state']
final_T = img_state.final_T if isinstance(img_state, ImageState) else None
n_contrib = rendered['n_contrib']
importance_map = rendered['importance_map']
depth_map = rendered['depth_map']
weight_map = rendered['weight_map']
auxs = [aux.cpu() for aux in [
locals().get('occlusions'),
locals().get('final_T'),
locals().get('n_contrib'),
locals().get('importance_map'),
locals().get('depth_map'),
locals().get('weight_map'),
] if aux is not None]
# metrics
if self.args.show_metrics:
rendered_ = rendered.unsqueeze(0)
gt_ = gt.unsqueeze(0)
lpips = self.lpips
metrics = {
'ssim': ssim (rendered_, gt_).item(),
'psnr': psnr (rendered_, gt_).item(),
'lpips': lpips(rendered_, gt_).item(),
}
self.refresh_status(metrics)
# draw
im_grid = make_grid(imgs + img_hists + auxs, nrow=len(imgs)).permute(1, 2, 0).cpu().numpy()
self.ax.clear()
self.ax.imshow(im_grid)
self.ax.axis('off')
self.cvs.draw()
def refresh_status(self, metrics:Dict[str, float]):
metrics_str = ', '.join([f'{k}: {v:.5}' for k, v in metrics.items()])
self.var_info.set('>> ' + metrics_str)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--show_metrics', action='store_true', help='show sample-wise metrics')
parser.add_argument('--show_histogram', action='store_true', help='show histograms of rendered images')
# Initialize system state (RNG)
safe_state(silent=False)
# Recover -M/--morph at training
morph = get_ckpt_morph()
print('>> morph:', morph)
# Resolve real implemetations
try:
try:
mod = import_module(f'modules.morphs.{morph}.hparam')
HyperParams_cls = getattr(mod, 'HyperParams')
except AttributeError:
HyperParams_cls = HyperParams
print('>> no overrided HyperParams class found, use default')
try:
mod = import_module(f'modules.morphs.{morph}.scene')
Scene_cls = getattr(mod, 'Scene')
except (ModuleNotFoundError, AttributeError):
Scene_cls = Scene
print('>> no overrided Scene class found, use default')
mod = import_module(f'modules.morphs.{morph}.render')
render_func = getattr(mod, 'render')
except: print_exc()
# Restore run env
hp = HyperParams_cls()
hp.send_to(parser)
cmd_args, _ = parser.parse_known_args()
cmd_args.eval = None
args = get_combined_args(cmd_args, hp)
hp.extract_from(args)
# gogogo!!
print('Hparams:')
pprint(vars(hp))
scene = Scene_cls(hp)
App(cmd_args, scene, render_func)