-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
executable file
·282 lines (229 loc) · 14 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import cv2
import time
import progressbar
import torch.backends.cudnn as cudnn
from tensorboardX import SummaryWriter
from torch.nn.parallel import DistributedDataParallel
from networks.clmvsnet import CLMVSNet
from datasets import get_loader
from tools import *
from loss import MVSLoss
from datasets.data_io import save_pfm
from filter import pcd_filter
from torchvision import transforms
class Model:
def __init__(self, args):
cudnn.benchmark = True
init_distributed_mode(args)
self.args = args
self.device = torch.device("cpu" if self.args.no_cuda or not torch.cuda.is_available() else "cuda")
self.network = CLMVSNet(args).to(self.device)
if self.args.distributed and self.args.sync_bn:
self.network = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.network)
if not (self.args.val or self.args.test):
self.optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.network.parameters()), lr=args.lr,
weight_decay=args.wd)
self.lr_scheduler = get_schedular(self.optimizer, self.args)
self.train_loader, self.train_sampler = get_loader(args, args.trainlist, "train")
if not self.args.test:
self.loss_func = MVSLoss(args)
self.val_loader, self.val_sampler = get_loader(args, args.testlist, "val")
if is_main_process():
self.writer = SummaryWriter(log_dir=args.log_dir, comment="Record network info")
self.network_without_ddp = self.network
if self.args.distributed:
self.network = DistributedDataParallel(self.network, device_ids=[self.args.local_rank])
self.network_without_ddp = self.network.module
if self.args.resume:
checkpoint = torch.load(self.args.resume, map_location="cpu")
if not (self.args.val or self.args.test):
self.args.start_epoch = checkpoint["epoch"] + 1
self.optimizer.load_state_dict(checkpoint["optimizer"])
self.lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
self.network_without_ddp.load_state_dict(checkpoint["model"])
self.args = args
def main(self):
if self.args.val:
self.validate()
return
if self.args.test:
self.test()
return
self.train()
def train(self):
for epoch in range(self.args.start_epoch, self.args.start_epoch + self.args.epochs):
if self.args.distributed:
self.train_sampler.set_epoch(epoch)
self.train_epoch(epoch)
if is_main_process():
torch.save({
'epoch': epoch,
'model': self.network_without_ddp.state_dict(),
'optimizer': self.optimizer.state_dict(),
"lr_scheduler": self.lr_scheduler.state_dict()},
"{}/model_{:0>6}.ckpt".format(self.args.log_dir, epoch))
if (epoch % self.args.eval_freq == 0) or (epoch == self.args.epochs - 1):
self.validate(epoch)
torch.cuda.empty_cache()
def train_epoch(self, epoch):
self.network.train()
if is_main_process():
pwidgets = [progressbar.Percentage(), " ", progressbar.Counter(format='%(value)02d/%(max_value)d'), " ", progressbar.Bar(), " ",
progressbar.Timer(), ",", progressbar.ETA(), ",", progressbar.Variable('LR', width=1), ",",
progressbar.Variable('Loss', width=1), ",", progressbar.Variable('Th2', width=1), ",",
progressbar.Variable('Th4', width=1), ",", progressbar.Variable('Th8', width=1)]
pbar = progressbar.ProgressBar(widgets=pwidgets, max_value=len(self.train_loader),
prefix="Epoch {}/{}: ".format(epoch, self.args.epochs)).start()
avg_scalars = DictAverageMeter()
for batch, data in enumerate(self.train_loader):
data = tocuda(data)
outputs = self.network(data, "train", epoch)
loss, losses= self.loss_func(data, outputs, epoch)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.lr_scheduler.step(epoch + batch / len(self.train_loader))
gt_depth = data["depth"]["stage{}".format(self.args.num_stage)]
mask = data["mask"]["stage{}".format(self.args.num_stage)]
thres2mm = Thres_metrics(outputs["depth"], gt_depth, mask > 0.5, 2)
thres4mm = Thres_metrics(outputs["depth"], gt_depth, mask > 0.5, 4)
thres8mm = Thres_metrics(outputs["depth"], gt_depth, mask > 0.5, 8)
abs_depth_error = AbsDepthError_metrics(outputs["depth"], gt_depth, mask > 0.5)
scalar_outputs = {"loss": loss,
"abs_depth_error": abs_depth_error,
"thres2mm_error": thres2mm,
"thres4mm_error": thres4mm,
"thres8mm_error": thres8mm}
image_outputs = {"depth_est": outputs["depth"] * mask,
"depth_est_nomask": outputs["depth"],
"depth_gt": gt_depth,
"ref_img": data["imgs"][:, 0],
"mask": mask,
"errormap": (outputs["depth"] - gt_depth).abs() * mask,
}
if self.args.distributed:
scalar_outputs = reduce_scalar_outputs(scalar_outputs)
scalar_outputs, image_outputs = tensor2float(scalar_outputs), tensor2numpy(image_outputs)
if is_main_process():
avg_scalars.update(scalar_outputs)
if batch >= len(self.train_loader) - 1:
save_scalars(self.writer, 'train_avg', avg_scalars.avg_data, epoch)
if (epoch * len(self.train_loader) + batch) % self.args.summary_freq == 0:
save_scalars(self.writer, 'train', scalar_outputs, epoch * len(self.train_loader) + batch)
save_images(self.writer, 'train', image_outputs, epoch * len(self.train_loader) + batch)
pbar.update(batch, LR=self.optimizer.param_groups[0]['lr'],
Loss="{:.3f}|{:.3f}".format(scalar_outputs["loss"], avg_scalars.avg_data["loss"]),
Th2="{:.3f}|{:.3f}".format(scalar_outputs["thres2mm_error"], avg_scalars.avg_data["thres2mm_error"]),
Th4="{:.3f}|{:.3f}".format(scalar_outputs["thres4mm_error"], avg_scalars.avg_data["thres4mm_error"]),
Th8="{:.3f}|{:.3f}".format(scalar_outputs["thres8mm_error"], avg_scalars.avg_data["thres8mm_error"]))
if is_main_process():
pbar.finish()
@torch.no_grad()
def validate(self, epoch=0):
self.network.eval()
if is_main_process():
pwidgets = [progressbar.Percentage(), " ", progressbar.Counter(format='%(value)02d/%(max_value)d'), " ", progressbar.Bar(), " ",
progressbar.Timer(), ",", progressbar.ETA(), ",", progressbar.Variable('Loss', width=1), ",",
progressbar.Variable('Th2', width=1), ",", progressbar.Variable('Th4', width=1), ",",
progressbar.Variable('Th8', width=1)]
pbar = progressbar.ProgressBar(widgets=pwidgets, max_value=len(self.val_loader), prefix="Val:").start()
avg_scalars = DictAverageMeter()
for batch, data in enumerate(self.val_loader):
data = tocuda(data)
outputs = self.network(data,"val")
loss, losses = self.loss_func(data, outputs, epoch)
gt_depth = data["depth"]["stage{}".format(self.args.num_stage)]
mask = data["mask"]["stage{}".format(self.args.num_stage)]
thres2mm = Thres_metrics(outputs["depth"], gt_depth, mask > 0.5, 2)
thres4mm = Thres_metrics(outputs["depth"], gt_depth, mask > 0.5, 4)
thres8mm = Thres_metrics(outputs["depth"], gt_depth, mask > 0.5, 8)
abs_depth_error = AbsDepthError_metrics(outputs["depth"], gt_depth, mask > 0.5)
scalar_outputs = {"loss": loss,
"abs_depth_error": abs_depth_error,
"thres2mm_error": thres2mm,
"thres4mm_error": thres4mm,
"thres8mm_error": thres8mm}
image_outputs = {"depth_est": outputs["depth"] * mask,
"depth_est_nomask": outputs["depth"],
"depth_gt": gt_depth,
"ref_img": data["imgs"][:, 0],
"mask": mask,
"errormap": (outputs["depth"] - gt_depth).abs() * mask,
}
if self.args.distributed:
scalar_outputs = reduce_scalar_outputs(scalar_outputs)
scalar_outputs, image_outputs = tensor2float(scalar_outputs), tensor2numpy(image_outputs)
if is_main_process():
avg_scalars.update(scalar_outputs)
if batch >= len(self.val_loader) - 1:
save_scalars(self.writer, 'test_avg', avg_scalars.avg_data, epoch)
if (epoch * len(self.val_loader) + batch) % self.args.summary_freq == 0:
save_scalars(self.writer, 'test', scalar_outputs, epoch * len(self.val_loader) + batch)
save_images(self.writer, 'test', image_outputs, epoch * len(self.val_loader) + batch)
pbar.update(batch,
Loss="{:.3f}|{:.3f}".format(scalar_outputs["loss"], avg_scalars.avg_data["loss"]),
Th2="{:.3f}|{:.3f}".format(scalar_outputs["thres2mm_error"], avg_scalars.avg_data["thres2mm_error"]),
Th4="{:.3f}|{:.3f}".format(scalar_outputs["thres4mm_error"], avg_scalars.avg_data["thres4mm_error"]),
Th8="{:.3f}|{:.3f}".format(scalar_outputs["thres8mm_error"], avg_scalars.avg_data["thres8mm_error"]))
if is_main_process():
pbar.finish()
@torch.no_grad()
def test(self):
inv_normalize = transforms.Normalize(
mean=[-0.485/0.229, -0.456/0.224, -0.406/0.255],
std=[1/0.229, 1/0.224, 1/0.255]
)
self.network.eval()
with open(self.args.testlist) as f:
content = f.readlines()
testlist = [line.rstrip() for line in content]
num_stage = self.args.num_stage
# step1. save all the depth maps and the masks in outputs directory
for scene in testlist:
TestImgLoader, _ = get_loader(self.args, [scene], "test")
for batch_idx, data in enumerate(TestImgLoader):
data_cuda = tocuda(data)
start_time = time.time()
outputs = self.network(data_cuda,"test")
end_time = time.time()
outputs = tensor2numpy_str(outputs)
del data_cuda
filenames = data["filename"]
cams = data["proj_matrices"]["stage{}".format(num_stage)].numpy()
imgs = data["imgs"]
print(scene,'Iter {}/{}, Time:{} Res:{}'.format(batch_idx, len(TestImgLoader), end_time - start_time, imgs[0].shape))
# save depth maps and confidence maps
for filename, cam, img, depth_est, photometric_confidence, photometric_confidence2, photometric_confidence1 \
in zip(filenames, cams, imgs, outputs["depth"], outputs["photometric_confidence"],
outputs["stage2"]["photometric_confidence"], outputs["stage1"]["photometric_confidence"]):
h, w = photometric_confidence.shape
img = img[0]
img = inv_normalize(img).numpy()
cam = cam[0]
photometric_confidence2 = cv2.resize(photometric_confidence2, (w, h), interpolation=cv2.INTER_NEAREST)
photometric_confidence1 = cv2.resize(photometric_confidence1, (w, h), interpolation=cv2.INTER_NEAREST)
confidence_filename2 = os.path.join(self.args.outdir, filename.format('confidence', '_stage2.pfm'))
confidence_filename1 = os.path.join(self.args.outdir, filename.format('confidence', '_stage1.pfm'))
confidence_filename = os.path.join(self.args.outdir, filename.format('confidence', '.pfm'))
depth_filename = os.path.join(self.args.outdir, filename.format('depth_est', '.pfm'))
cam_filename = os.path.join(self.args.outdir, filename.format('cams', '_cam.txt'))
img_filename = os.path.join(self.args.outdir, filename.format('images', '.png'))
os.makedirs(depth_filename.rsplit('/', 1)[0], exist_ok=True)
os.makedirs(confidence_filename.rsplit('/', 1)[0], exist_ok=True)
os.makedirs(cam_filename.rsplit('/', 1)[0], exist_ok=True)
os.makedirs(img_filename.rsplit('/', 1)[0], exist_ok=True)
# save depth maps
save_pfm(depth_filename, depth_est)
# save confidence maps
save_pfm(confidence_filename, photometric_confidence)
save_pfm(confidence_filename2, photometric_confidence2)
save_pfm(confidence_filename1, photometric_confidence1)
# save cams, img
write_cam(cam_filename, cam)
img = np.clip(np.transpose(img, (1, 2, 0)) * 255, 0, 255).astype(np.uint8)
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
cv2.imwrite(img_filename, img_bgr)
torch.cuda.empty_cache()
# step2. filter saved depth maps with photometric confidence maps and geometric constraints
if self.args.filter_method == "pcd":
pcd_filter(self.args, testlist, self.args.num_worker)