-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfigs_gan_free_ffhq.yml
56 lines (45 loc) · 1.96 KB
/
configs_gan_free_ffhq.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
Introduction : 'GAN-free methods for gradient inversion attack.'
optim : 'GAN_free' #optim method, ['GAN_based', 'GAN_free']
cost_fn : 'sim_cmpr0' #the type of loss function
set_seed : # random seed. Following geiping et. al., we do not give random seed for GAN-free methods.
indices : 'def' #decide which part of gradients to be involved in the final gradients match loss.
weights : 'equal' #weight of every graident scalar's matching loss
init : 'randn' #how we initial the original latent code.
model : 'ResNet18' #FL model
restarts : 4
num_images : 1 # the number of images to reconstruct at a batch
num_exp : 10 # the number of experiments
target_id : 0
lr : 0.1 #learning rate for Yin et al.
total_variation : 0.0001 #the coefficient of total variation
image_norm : 0.000001 #the coefficient of norm regularizer for Yin et al.
group_lazy : 0.01 #choose if we use group lazy regularization for Yin et al.
bn_stat : 0 #choose if we use bn statistic to regularizer
max_iterations : 15000 #Maximum number of iterations for reconstruction.
gias_lr : 0.00001 #For biggan, we'd better choose smaller learning rate.
# For input data
generative_model : ''
gen_dataset : 'FFHQ64' # ['ImageNet64', 'FFHQ64']
dataset : 'FFHQ64'
data_path : '/depot/ninghui/data/ffhq-dataset/ffhq_dataset/' # specify your dataset path
#For output data
exp_name : 'ex1_gan_free_ffhq' #Same latent space search
output_dir : '/scratch/gilbreth/zhan4057/gradinv/results_gan_free_ffhq/'
#Choice for GAN-free methods
geiping : true
yin : false
# training epoch
train_epochs: 100
our_num_tries : 20
#Defense parameter
defense_method : 'orthogonal'
defense_setting :
noise : null
clipping : 4
compression : 20
representation : null
orthogonal : null
# The pre-trained StyleGAN checkpoint
ckpt: None
#LR pace for training
lr_same_pace: false