-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_rec.py
500 lines (419 loc) · 24.1 KB
/
run_rec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
"""Run reconstruction in a terminal prompt.
Optional arguments can be found in inversefed/options.py
This CLI can recover the baseline experiments.
"""
import os
#limit the visual gpus
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import torch
import torchvision
import torch.nn as nn
import yaml
import numpy as np
import inversefed
torch.backends.cudnn.benchmark = inversefed.consts.BENCHMARK
from collections import defaultdict
import datetime
import time
import json
import hashlib
import csv
import copy
import pickle
import defense
import lpips
import datetime
import logging
def init_logger(output_dir, log_level=logging.INFO):
"""Initialize and configure the root logger."""
# Configure the root logger
root_logger = logging.getLogger()
root_logger.setLevel(log_level)
# File Handler
fh = logging.FileHandler(os.path.join(output_dir, "main.log"))
fh.setLevel(log_level)
fh_formatter = logging.Formatter('%(message)s') # Only message content
fh.setFormatter(fh_formatter)
root_logger.addHandler(fh)
# Stream Handler (Console)
sh = logging.StreamHandler()
sh.setLevel(log_level)
sh_formatter = logging.Formatter('%(message)s') # Only message content
sh.setFormatter(sh_formatter)
root_logger.addHandler(sh)
root_logger.info("-" * 80)
return root_logger
nclass_dict = {'I32': 1000, 'I64': 1000, 'I128': 1000,
'CIFAR10': 10, 'CIFAR100': 100, 'CA': 8, 'ImageNet':1000, 'IMAGENET_IO' : 1000,
'FFHQ': 10, 'FFHQ64': 10, 'FFHQ128': 10, 'OOD_FFHQ':10, 'OOD_IMAGENET':1000
}
# Parse input arguments
parser = inversefed.options()
parser.add_argument('--seed', default=1234, type=float, help='Local learning rate for federated averaging')
parser.add_argument('--batch_size', default=4, type=int, help='Number of mini batch for federated averaging')
parser.add_argument('--local_lr', default=1e-4, type=float, help='Local learning rate for federated averaging')
parser.add_argument('--checkpoint_path', default='', type=str, help='Local learning rate for federated averaging')
parser.add_argument('--gan', default='stylegan2', type=str, help='GAN model option:[stylegan2, biggan]')
parser.add_argument('--config', default='./config_stylegan2', type=str, help='Path of selected config file.')
args = parser.parse_args()
if args.target_id is None:
args.target_id = 0
args.save_image = True
# Parse training strategy
defs = inversefed.training_strategy('conservative')
defs.epochs = args.epochs
def load_config(config_path):
with open(config_path, "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
f.close()
return config
def save_experiment_config(config_path, save_dir):
# Generate a unique identifier for the experiment
experiment_id = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
saved_config_file = os.path.join(save_dir, f"experiment_config_{experiment_id}.yml")
# Read and save a copy of the configuration
with open(config_path, "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
with open(saved_config_file, 'w') as file:
yaml.dump(config, file)
return saved_config_file
if __name__ == "__main__":
# Choose GPU device and print status information:
current_time = datetime.datetime.now().strftime("%b.%d_%H.%M.%S")
start_time = time.time()
#read config
config_path = args.config
config = load_config(config_path=config_path)
# change the exp path
config['exp_name'] = config['exp_name'] + '_num_images_' + str(config['num_images']) + '_defense_'+ str(config['defense_method']) + '_' + current_time
save_dir = os.path.join(config['output_dir'], config['exp_name'])
os.makedirs(save_dir, exist_ok=True)
logger = init_logger(save_dir)
# Log the process ID
pid = os.getpid()
logging.info(f"Process ID: {pid}")
logger.info("output_dir: {}".format(save_dir))
setup = inversefed.utils.system_startup(args)
save_experiment_config(config_path, save_dir)
logger.info(f"Config for this experiment is saved")
# Prepare for training
# Get data:
loss_fn, trainloader, validloader = inversefed.construct_dataloaders(config['dataset'], defs, data_path=config['data_path'])
set_seed = config['set_seed']
if isinstance(set_seed, int):
logger.info("Set seed:{}".format(set_seed))
torch.manual_seed(set_seed)
model, model_seed = inversefed.construct_model(config['model'], num_classes=nclass_dict[config['dataset']], num_channels=3, seed=set_seed)
model.to(**setup)
if config['dataset'].startswith('FFHQ') or config['dataset'].endswith('FFHQ'):
dm = torch.as_tensor(getattr(inversefed.consts, f'cifar10_mean'), **setup)[:, None, None]
ds = torch.as_tensor(getattr(inversefed.consts, f'cifar10_std'), **setup)[:, None, None]
else:
dataset = config['dataset']
dm = torch.as_tensor(getattr(inversefed.consts, f'{dataset.lower()}_mean'), **setup)[:, None, None]
ds = torch.as_tensor(getattr(inversefed.consts, f'{dataset.lower()}_std'), **setup)[:, None, None]
# optimizer, scheduler = inversefed.training.set_optimizer(model, defs)
optimizer = torch.optim.SGD(model.parameters(), lr=defs.lr, momentum=0.9,
weight_decay=defs.weight_decay)
logger.info(f"Optimizer: {optimizer}")
# train the model and save the model checkpoint at each epoch
for epoch in range(config['train_epochs']):
# add the epoch folder
save_dir = os.path.join(config['output_dir'], config['exp_name'], f'epoch_{epoch}')
os.makedirs(save_dir, exist_ok=True)
logger.info(f"Epoch {epoch} started,saved at {save_dir}")
# model = nn.DataParallel(model)
model.eval()
if config['optim'] == 'GAN_based':
config_m = dict(cost_fn=config['cost_fn'],
indices=config['indices'],
weights=config['weights'],
lr=config['lr'] if config['lr'] is not None else 0.1,
optim='adam',
restarts=config['restarts'],
max_iterations=config['max_iterations'],
total_variation=config['total_variation'],
bn_stat=config['bn_stat'],
image_norm=config['image_norm'],
z_norm= args.z_norm,
group_lazy=config['group_lazy'],
init=config['init'],
lr_decay=True,
dataset=config['dataset'],
#params for inter optim
ckpt= config['ckpt'],
gifd = config['gifd'],
steps = config['steps'],
lr_io = config['lr_io'],
start_layer = config['start_layer'],
end_layer = config['end_layer'],
do_project_gen_out = config['do_project_gen_out'],
do_project_noises = config['do_project_noises'],
do_project_latent = config['do_project_latent'],
max_radius_gen_out = config['max_radius_gen_out'],
max_radius_noises = config['max_radius_noises'],
max_radius_latent = config['max_radius_latent'],
#defense
defense_method = config['defense_method'],
defense_setting = config['defense_setting'],
generative_model=config['generative_model'],
gen_dataset=config['gen_dataset'],
giml='',
gias= config['gias'],
ggl = config['ggl'],
cma_budget = config['cma_budget'],
num_sample = config['num_sample'],
KLD = config['KLD'],
gias_lr=config['gias_lr'],
gias_iterations=config['gias_iterations'],
)
elif config['optim'] == 'GAN_free':
config_m = dict(cost_fn=config['cost_fn'],
indices=config['indices'],
weights=config['weights'],
lr=config['lr'] if config['lr'] is not None else 0.1,
optim='adam',
restarts=config['restarts'],
max_iterations=config['max_iterations'],
total_variation=config['total_variation'],
bn_stat=config['bn_stat'],
image_norm=config['image_norm'],
z_norm=args.z_norm,
group_lazy=config['group_lazy'],
init=config['init'],
lr_decay=True,
dataset=config['dataset'],
geiping=config['geiping'],
yin=config['yin'],
generative_model='',
gen_dataset='',
giml=False,
gias=False,
gias_lr=0.0,
gias_iterations=0,
)
G = None
if args.checkpoint_path:
with open(args.checkpoint_path, 'rb') as f:
G, _ = pickle.load(f)
G = G.requires_grad_(True).to(setup['device'])
#Save the config file first
inversefed.utils.save_to_table(os.path.join(config['output_dir'], config['exp_name']), name='configs', dryrun=args.dryrun, **config)
target_id = config['target_id']
iter_dryrun = False
for i in range(config['num_exp']):
# indicator dictionary
psnrs = {}
lpips_sc ={}
lpips_sc_a = {}
ssim = {}
mse_i = {}
target_id = config['target_id'] + i * 1000
tid_list = []
print(f"Dataset size: {len(validloader.dataset)}")
print(f"Attempting to access index: {target_id}")
if config['num_images'] == 1:
ground_truth, labels = validloader.dataset[target_id]
ground_truth, labels = ground_truth.unsqueeze(0).to(**setup), torch.as_tensor((labels,), device=setup['device'])
target_id_ = target_id + 1
logger.info(f"loaded img {target_id_ - 1}")
tid_list.append(target_id_ - 1)
else:
ground_truth, labels = [], []
target_id_ = target_id
while len(labels) < config['num_images']:
img, label = validloader.dataset[target_id_]
target_id_ += 1
if (label not in labels):
logger.info("loaded img %d" % (target_id_ - 1))
labels.append(torch.as_tensor((label,), device=setup['device']))
ground_truth.append(img.to(**setup))
tid_list.append(target_id_ - 1)
ground_truth = torch.stack(ground_truth)
labels = torch.cat(labels)
img_shape = (3, ground_truth.shape[2], ground_truth.shape[3])
# Run reconstruction
if config['bn_stat'] > 0:
bn_layers = []
for module in model.modules():
if isinstance(module, nn.BatchNorm2d):
bn_layers.append(inversefed.BNStatisticsHook(module))
if args.accumulation == 0:
logger.info("Ground truth's size:{}".format(ground_truth[0].shape))
target_loss, _, _ = loss_fn(model(ground_truth), labels)
input_gradient = torch.autograd.grad(target_loss, model.parameters())
# compute the input_gradient norm
input_gradient_norm = torch.norm(torch.cat([g.view(-1) for g in input_gradient]), p=2)
# move the input_gradient norm to the cpu
input_gradient_tmp = input_gradient_norm.cpu().detach().numpy()
logger.info(f"Input gradient norm: {input_gradient_norm}")
logger.info(f"Target loss: {target_loss.item()}")
# save the input_gradient norm and the target_loss to a csv file, use the save to table function, only save the input_gradient norm and the target_loss
inversefed.utils.save_to_table(os.path.join(save_dir), name=f'{epoch}_epoch_input_gradient_norm', dryrun=args.dryrun, input_gradient_norm=input_gradient_tmp, target_loss=target_loss.item(), target_id=target_id, seed=model_seed)
best_noise_loss = target_loss
bn_prior = []
if config['bn_stat'] > 0:
for idx, mod in enumerate(bn_layers):
mean_var = mod.mean_var[0].detach(), mod.mean_var[1].detach()
bn_prior.append(mean_var)
#apply defense strategy
if config['defense_method'] is None:
logger.info('No defense applied.')
d_param = config['defense_setting']
else:
if config['defense_method'] == 'noise':
d_param = 0.01 if config['defense_setting']['noise'] is None else config['defense_setting']['noise']
input_gradient = defense.additive_noise(model, input_gradient, save_dir, std=d_param)
overhead_end_time = time.time()
if config['defense_method'] == 'clipping':
d_param = 4 if config['defense_setting']['clipping'] is None else config['defense_setting']['clipping']
input_gradient = defense.gradient_clipping(input_gradient, bound=d_param)
if config['defense_method'] == 'compression':
d_param = 20 if config['defense_setting']['compression'] is None else config['defense_setting']['compression']
input_gradient = defense.gradient_compression(input_gradient, percentage=d_param)
if config['defense_method'] == 'representation':
d_param = 10 if config['defense_setting']['representation'] is None else config['defense_setting']['representation']
input_gradient = defense.perturb_representation(input_gradient, model, ground_truth, pruning_rate=d_param)
if config['defense_method'] == 'orthogonal' and epoch in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
logger.info('Orthogonal applied in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9,
weight_decay=defs.weight_decay)
d_param = 1e-4 if config['defense_setting']['orthogonal'] is None else config['defense_setting']['orthogonal']
input_gradient, best_noise_loss = defense.orthogonal_gradient(input_gradient, model, ground_truth, labels, trials=config['our_num_tries'], epsilon=d_param, best_loss = target_loss)
elif config['defense_method'] == 'orthogonal' and epoch not in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
optimizer = torch.optim.SGD(model.parameters(), lr=defs.lr, momentum=0.9,
weight_decay=defs.weight_decay)
logger.info('Orthogonal applied in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], no defense applied later.')
rec_machine = inversefed.GradientReconstructor(model, setup['device'], (dm, ds), config_m, num_images=config['num_images'], bn_prior=bn_prior, G=G)
if G is None:
G = rec_machine.G
logger.info("Real labels:{}".format(labels))
result = rec_machine.reconstruct(input_gradient, labels, img_shape=img_shape, dryrun=iter_dryrun)
if iter_dryrun:
continue
else:
local_gradient_steps = args.accumulation
local_lr = args.local_lr
batch_size = args.batch_size
input_parameters = inversefed.reconstruction_algorithms.loss_steps(model, ground_truth,
labels,
lr=local_lr,
local_steps=local_gradient_steps, use_updates=True, batch_size=batch_size)
input_parameters = [p.detach() for p in input_parameters]
rec_machine = inversefed.FedAvgReconstructor(model, (dm, ds), local_gradient_steps,
local_lr, config_m,
num_images=config['num_images'], use_updates=True,
batch_size=batch_size)
if G is None:
if rec_machine.generative_model_name in ['stylegan2']:
G = rec_machine.G_synthesis
else:
G = rec_machine.G
result = rec_machine.reconstruct(input_parameters, labels, img_shape=img_shape, dryrun=args.dryrun)
#lpips
lpips_loss = lpips.LPIPS(net='vgg', spatial=False).to(**setup)
lpips_loss_a = lpips.LPIPS(net='alex', spatial=False).to(**setup)
#Record the best layer if GIFD is applied
Best_layer_num = -1
for idx, item in enumerate(result):
# Compute stats and save to a table:
file_name = item[0]
output = item[1]
stats = item[2]
if file_name == "Best_layer_num":
Best_layer_num = int(output)
continue
if output is None : #some layers were skiped
test_psnr = -1
lpips_score = -1
lpips_score_a = -1
ssim_score = -1
test_mse = -1
feat_mse = -1
elif output.shape[-1] != ground_truth.shape[-1]:
test_psnr = -1
lpips_score = -1
lpips_score_a = -1
ssim_score = -1
test_mse = -1
feat_mse = -1
output_den = torch.clamp(output * ds + dm, 0, 1)
else:
output_den = torch.clamp(output * ds + dm, 0, 1)
ground_truth_den = torch.clamp(ground_truth * ds + dm, 0, 1)
# logger.info("output's dimension:{} ground_truth's dimension:{}".format(output.shape, ground_truth.shape))
feat_mse = (model(output) - model(ground_truth)).pow(2).mean().item()
test_mse = (output_den - ground_truth_den).pow(2).mean().item()
ssim_score, _ = inversefed.metrics.ssim_batch(output, ground_truth)
with torch.no_grad():
lpips_score = lpips_loss(output, ground_truth).squeeze().mean().item()
lpips_score_a = lpips_loss_a(output, ground_truth).squeeze().mean().item()
logger.info("output_den's dimension:{}".format(output_den.shape))
test_psnr = inversefed.metrics.psnr(output_den, ground_truth_den, factor=1)
logger.info(f"Rec. loss: {stats['opt']:2.4f} | MSE: {test_mse:2.4f} | LPIPS(VGG): {lpips_score:2.4f} | LPIPS(ALEX): {lpips_score_a:2.4f} | SSIM: {ssim_score:2.4f} | PSNR: {test_psnr:4.2f} | FMSE: {feat_mse:2.4e} | ")
ouput_dir = os.path.join(save_dir, file_name)
psnrs[file_name +'_psnr'] = test_psnr
lpips_sc[file_name +'_lpips(vgg)'] = lpips_score
lpips_sc_a[file_name +'_lpips(alex)'] = lpips_score_a
ssim[file_name +'_ssim'] = ssim_score
mse_i[file_name + '_mse_i'] = test_mse
os.makedirs(os.path.join(ouput_dir), exist_ok=True)
exp_name = config['exp_name']
inversefed.utils.save_to_table(os.path.join(ouput_dir), name=f'{exp_name}', dryrun=args.dryrun,
rec_loss=stats["opt"],
psnr=test_psnr,
LPIPS_VGG=lpips_score,
LPIPS_ALEX=lpips_score_a,
ssim=ssim_score,
test_mse=test_mse,
feat_mse=feat_mse,
target_id=target_id,
seed=model_seed
)
# Save the resulting image
if args.save_image and output is not None:
for j in range(config['num_images']):
torchvision.utils.save_image(output_den[j:j + 1, ...], os.path.join(ouput_dir, f'{tid_list[j]}_gen.png'))
# Update target id
target_id = target_id_
if Best_layer_num >= 0:
inversefed.utils.save_to_table(os.path.join(save_dir), name='Metrics', dryrun=args.dryrun, target_id=int(target_id - 1), Best_layer_num=Best_layer_num ,**psnrs, **lpips_sc, **lpips_sc_a, **ssim, **mse_i)
else:
inversefed.utils.save_to_table(os.path.join(save_dir), name='Metrics', dryrun=args.dryrun, target_id=int(target_id - 1), **psnrs, **lpips_sc, **lpips_sc_a, **ssim, **mse_i)
for j in range(config['num_images']):
torchvision.utils.save_image(ground_truth_den[j:j + 1, ...], os.path.join(save_dir, f'{tid_list[j]}_gt.png'))
#one row represents psnrs of a batch
learning_rate = 0.001
# after inversion, we need to update the model with input_gradient
with torch.no_grad():
for param, best_grad in zip(model.parameters(), input_gradient):
param.data -= best_grad * learning_rate
logger.info("Model updated with best gradient.")
noisy_input_gradient_norm = torch.norm(torch.stack([g.norm() for g in input_gradient]), 2)
logger.info('Best noise gradient L2 norm: {}'.format(noisy_input_gradient_norm))
inversefed.utils.save_to_table(os.path.join(save_dir), name=f'{epoch}_epoch_noise_gradient_norm', dryrun=args.dryrun, noisy_input_gradient_norm=str(noisy_input_gradient_norm.item()), best_noise_loss=best_noise_loss.item(), target_id=target_id, seed=model_seed)
# simulate FL training, train the model with more instances, then evaluate the model
model.train()
for i, (inputs, targets) in enumerate(trainloader):
logger.info(f"Epoch {epoch} batch {i} started")
optimizer.zero_grad()
inputs = inputs.to(**setup)
targets = targets.to(**setup)
targets = targets.long()
outputs = model(inputs)
loss, _, _ = loss_fn(outputs, targets)
loss.backward()
optimizer.step()
logger.info(f"loss: {loss.item()} at epoch {epoch} batch {i}")
logger.info(f"Epoch {epoch} training loss: {loss.item()}")
# save the model checkpoint at each epoch
save_path = os.path.join(save_dir, f"model_epoch_{epoch}.pt")
torch.save(model.state_dict(), save_path)
logger.info(f"Model {epoch} epoch checkpoint saved at {save_path}")
# Print final timestamp
logger.info(datetime.datetime.now().strftime("%A, %d %B %Y %I:%M%p"))
logger.info('---------------------------------------------------')
logger.info(f'Finished computations with time: {str(datetime.timedelta(seconds=time.time() - start_time))}')
logger.info("output_dir: {}".format(save_dir))
logger.info('-------------Job finished.-------------------------')