-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKrippendorffs Alpha.R
116 lines (91 loc) · 3.51 KB
/
Krippendorffs Alpha.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
####
##
## Tutorial on Krippendorff's Alpha: by Kaylee Davis
## Ohio State University
##
## Be sure to cite the creators article:
## Hayes, A. F., & Krippendorff, K. (2007).
## Answering the call for a standard reliability measure for coding data.
## Communication Methods and Measures, 1, 77-89.
##
## Krippendorff, K. (1980). Content analysis: An introduction to its methodology. Beverly Hills, CA: Sage
##
## And the R: Package's Creator:
## Jim Lemon, found here: https://cran.r-project.org/web/packages/irr/irr.pdf
##
####
# install.packages("irr")
library(irr)
# the "C" data from Krippendorff
nmm <- matrix(c(1,1,NA,1,2,2,3,2,3,3,3,3,3,3,3,3,2,2,2,2,1,2,3,4,4,4,4,4,
1,1,2,1,2,2,2,2,NA,5,5,5,NA,NA,1,1,NA,NA,3,NA), nrow=4)
nmm
# Here we have 4 coders (rows), and 12 data, with some NA's
# One of the benefits of Krippendorff's Alpha is it's ability to work through missing data
# first assume the default nominal classification
kripp.alpha(nmm)
# now use the same data with the other three methods:
kripp.alpha(nmm,"ordinal")
kripp.alpha(nmm,"interval")
kripp.alpha(nmm,"ratio")
# Some cool options here:
alpha <- kripp.alpha(nmm)
# See the basic stats:
alpha$method # Krippendorf's Alpha (irr can calculate other reliability measures)
alpha$subjects # n subjects
alpha$raters # n raters
alpha$irr.name # alpha
alpha$value # the sum value
# and the components used in the calculation itself:
alpha$cm # concordance/discordance matrix used in the calculation of alpha
alpha$data.values # all unique data values
alpha$nmatchval # number of matches used in Krippendorff calculation
## Then you can use your favorite bootstrapping function to account for errors:
# Empty matrix, enter blank template
results <- matrix(nrow = 1000, ncol = 1)
for (i in 1:1000)
{
rows <- sample(1:4,4,replace=FALSE) # Sample our rows, without replacement
columns <- sample(1:12,12,replace=TRUE) # Sample our cols, with replacement
data <- nmm[rows,columns] # add our data to the random rows selection
results[i] <- kripp.alpha(data)$value # store alpha scores
}
head(results)
# checking our quantiles:
q <- quantile(results, probs = c(.1, .5, .9))
q[1] # For example
# Using ggplot2:
library(ggplot2)
p1 <- qplot(results)+
geom_vline(xintercept = q[1], col="Red")+
geom_vline(xintercept = q[3], col="Red")+
ggtitle("1000 Bootstrapped Simulated Results")+
xlab(" Results ")+
theme_bw()
p1
# So this is then looking at all randomly selected variables, across random our coders (without replacement)
# Note our results are similar to our beginning alpha score, but this is a bit more reliable, and we can see
# our quantiles, indicating error and possible skew.
mean(results)
#------- What would things looks like, if we were wrong? ----------
# Quick test of some crazy data: lots of coders, not much content:
tnmm <- t(nmm) # Let's flip everything on it's head
kripp.alpha(tnmm)
# Empty matrix, enter blank template
results <- matrix(nrow = 10000, ncol = 1)
for (i in 1:10000)
{
rows <- sample(1:12,12,replace=FALSE)
cols <- sample(1:4,4,replace=TRUE)
data <- tnmm[rows,cols]
results[i] <- kripp.alpha(data)$value
} # takes some time to compute...
head(results)
# here's what we would find:
library(ggplot2)
p1 <- qplot(results)+
ggtitle("1000 Bootstrapped Simulated Results")+
xlab("Results")+
theme_bw()
p1
mean(results) # Not ideal.