-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
113 lines (97 loc) · 3.96 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import numpy as np
from collections import Counter, OrderedDict
import string
import re
import argparse
import json
import sys
import math
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
return (normalize_answer(prediction) == normalize_answer(ground_truth))
def squad_exact_match_score(prediction, ground_truth):
return (normalize_answer(prediction) == normalize_answer(ground_truth))
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def evaluate(dataset, predictions, stratify=False, return_dict=False):
if stratify:
f1 = {}
exact_match = {}
q_types = {} # count
else:
f1 = exact_match = 0
if return_dict:
score_dict = {}
not_exist_in_pred = total = 0
for article in dataset:
for paragraph in article['paragraphs']:
for qa in paragraph['qas']:
if qa['id'] not in predictions:
#message = 'Unanswered question ' + qa['id'] + \
# ' will not receive score 0 to evaluate with split'
#print(message, file=sys.stderr)
not_exist_in_pred += 1
continue
total += 1
ground_truths = list(map(lambda x: x['text'], qa['answers']))
prediction = predictions[qa['id']]
if stratify:
q_type = qa['question_tokenized'][0].lower()
q_types[q_type] = q_types.get(q_type, 0) + 1
_exact_match = metric_max_over_ground_truths(
exact_match_score, prediction, ground_truths)
_f1 = metric_max_over_ground_truths(
f1_score, prediction, ground_truths)
if stratify:
exact_match[q_type] = exact_match.get(q_type, 0) + _exact_match
f1[q_type] = f1.get(q_type, 0) + _f1
else:
exact_match += _exact_match
f1 += _f1
if return_dict:
score_dict[qa['id']] = {
'F1': _f1,
'EM': _exact_match
}
if stratify:
for q_type in f1:
f1[q_type] = 100.0 * f1[q_type] / q_types[q_type]
exact_match[q_type] = 100.0 * exact_match[q_type] / q_types[q_type]
else:
exact_match = 100.0 * exact_match / total
f1 = 100.0 * f1 / total
# print('# of unanswerd questions: {}'.format(not_exist_in_pred))
# print('# of answered questions: {}'.format(total))
if stratify:
all_score = {'exact_match': exact_match, 'f1': f1, 'q_type': q_types}
else:
all_score = {'exact_match': exact_match, 'f1': f1}
if return_dict:
return all_score, score_dict
return all_score