-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path20180118-mix-of-gaussian-avoid-underflow.py
198 lines (175 loc) · 7.54 KB
/
20180118-mix-of-gaussian-avoid-underflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
'''
Expectation Maximization
------------------------
To run, launch
python expect-maximize.py <# of clusters> <data file> <model file>
python expect-maximize.py vehicle.train model.tmp
The data file looks like
<# of examples> <# of features>
<ex.1, feature 1> <ex.1, feature 2> … <ex.1, feature n> <ex.1, label>
<ex.2, feature 1> <ex.2, feature 2> … <ex.2, feature n> <ex.2, label>
The output model file looks like
<# of clusters> <# of features>
<clust1.prior> <clust1.mean1> <clust1.mean2> … <clust1.var1> …
<clust2.prior> <clust2.mean1> <clust2.mean2> … <clust2.var1> …
This version calculates probability in its log form to avoid underflow of float.
'''
import numpy as np
from scipy.stats import norm
# To avoid np.log(x) warning of divide by 0, we can add a small amount to x
ABS = 1e-15
def log_sum_exp(x):
# Handle log \sum exp(x_i) = x_max + log \sum exp(x_i - x_max)
# Input x of shape (N, D)
# Return (D)
return (np.max(x, axis=0) +
np.log(np.sum(np.exp(x - np.max(x, axis=0)), axis=0)))
def test_log_sum_exp(x):
# Test the log_sum_exp
res = np.log(np.sum(np.exp(x), axis=0))
res2 = log_sum_exp(x)
return (res - res2)
def logexpectation(x, priors, means, sigmas, normalize=True):
# X are the data of shape [N, D]
# priors are the prior of models, shape [K]
# Posterior = [N, K], prob of x_i coming from cluster k, normalized and log
N, D = x.shape
K = priors.shape[0]
priors = np.log(priors)
posterior = np.zeros((N, K))
for i in range(K):
posterior[:, i] = priors[i] + \
np.sum(norm.logpdf(x, means[i], sigmas[i]), axis=1)
if normalize: posterior = posterior - log_sum_exp(posterior.T)[:, None]
return posterior
def maximization(x, logposterior):
# Given log of posterior prob, find the best model
N, K = logposterior.shape
_, D = x.shape
sum_posterior_k = log_sum_exp(logposterior) # [K]
priors = np.exp(sum_posterior_k - np.log(N)) # [K]
fx = np.expand_dims(np.log(x + ABS), axis=1) # [N, 1, D]
fp = np.expand_dims(logposterior, axis=2) # [N, K, 1]
means = np.exp(log_sum_exp(fx + fp) - sum_posterior_k[:, None]) # [K,D]
posterior = np.exp(logposterior)
dx = np.expand_dims(x, axis=1) - np.expand_dims(means, axis=0) # [N, K, D]
dx = 2 * np.log(np.abs(dx) + ABS)
sigmas = np.exp(0.5 * (log_sum_exp(dx + fp) - sum_posterior_k[:, None])) # [K,D]
return priors, means, sigmas
def init_model(num_cluster, x, uniform):
N, D = x.shape
lb = np.min(x, axis=0)
ub = np.max(x, axis=0)
lu = ub - lb
priors = np.array([1 / float(num_cluster)] * num_cluster)
sigmas = np.array([lu / np.sqrt(num_cluster)] * num_cluster)
if uniform:
means = np.random.random((num_cluster, D)) * lu + lb
else: # select data point to be used as cluster mean
index = np.random.choice(range(N), num_cluster, replace=False)
means = x[index]
return priors, means, sigmas
def load_data(data_file, hasLabel=True):
with open(data_file, 'r') as f:
N, D = f.readline().strip().split()
N, D = int(N), int(D)
x = []
label = []
for i in range(N):
line = f.readline().strip().split()
if hasLabel: label.append(line.pop(-1))
x.append([float(a) for a in line])
return N, D, np.array(x), np.array(label)
def save_model(model_file, priors, means, sigmas):
# Save a mix of Gaussian model to model_file
# <# of clusters> <# of features>
# <clust1.prior> <clust1.mean1> <clust1.mean2> … <clust1.var1> …
# <clust2.prior> <clust2.mean1> <clust2.mean2> … <clust2.var1> …
with open(model_file, 'w') as f:
K, D = means.shape
f.write("%d %d\n" % (K, D))
for i in range(K):
f.write("%d %s %s\n" % (priors[i], ' '.join(map(str, means[i])),
' '.join(map(str, sigmas[i]**2))))
def loglikelihood(x, priors, means, sigmas):
logposterior = logexpectation(x, priors, means, sigmas, normalize=False)
loglikelihoods = log_sum_exp(logposterior.T)
return np.sum(loglikelihoods)
def evaluate_labels(x, priors, means, sigmas, labels, cluster_label=None):
N, D = x.shape
K = priors.shape[0]
TK = np.unique(labels)
count_correct = 0
logposterior = logexpectation(x, priors, means, sigmas)
label = np.argmax(logposterior, axis=1)
if cluster_label is not None:
label = cluster_label[label]
count_correct = (labels == label).sum()
else:
cluster_label = []
for i in range(K):
bucket = labels[label==i]
unique, pos = np.unique(bucket, return_inverse=True)
counts = np.bincount(pos)
maxpos = counts.argmax()
count_correct += counts[maxpos]
cluster_label.append(unique[maxpos])
cluster_label = np.array(cluster_label)
return count_correct / float(N), cluster_label
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('num_cluster', type=int)
parser.add_argument('data_file', type=str)
parser.add_argument('model_file', type=str)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--test_file', type=str)
parser.add_argument('--init_uniform', action='store_true')
parser.add_argument('--log_file', type=str)
parser.add_argument('--verbose', '-v', action='store_true')
args = parser.parse_args()
np.random.seed(args.seed)
N, D, x, label = load_data(args.data_file, hasLabel=True)
if args.test_file:
_, _, x_test, label_test = load_data(args.test_file, hasLabel=True)
# Train EM
print("Training MoGaussian model with %d clusters, init to %s" %
(args.num_cluster, 'uniform' if args.init_uniform else 'data'))
priors, means, sigmas = init_model(args.num_cluster, x,
uniform=args.init_uniform)
loghis = [-float("inf")]
loghis_t = []
for itr in range(1,10000):
p = logexpectation(x, priors, means, sigmas)
priors, means, sigmas = maximization(x, p)
loghis.append(loglikelihood(x, priors, means, sigmas))
print(loghis[-1])
if args.test_file: loghis_t.append(loglikelihood(x_test, priors, means, sigmas))
if args.verbose: print("== Iter %d \t Train LogLike %.6f" % (itr, loghis[-1]))
if loghis[-2] * 0.999 >= loghis[-1]: break
if np.isnan(loghis[-1]):
# Cluster collapse ..
import sys
sys.exit(0)
loghis.pop(0)
print("Convergence took %d iters" % itr)
print("Final training log likelihood %f" % loghis[-1])
# Save Model
save_model(args.model_file, priors, means, sigmas)
# Evaluate
train_perf, cluster_label = evaluate_labels(x, priors, means, sigmas, label)
print("Accuracy on training set (compared with gt) %.6f " % train_perf)
if args.test_file:
test_perf, _ = evaluate_labels(x_test, priors, means, sigmas, label_test, cluster_label)
print("Accuracy on test set (compared with gt) %.6f " % test_perf)
if args.log_file:
with open(args.log_file, "a+") as f:
# Num cluster, Init, Seed, Iter, Loglikelihood, Accuracy
f.write("%d %d %d %d %.8f %.3f" % (args.num_cluster,
args.init_uniform, args.seed, itr, loghis[-1], train_perf))
if args.test_file:
f.write(" %.8f %.3f\n" % (loghis_t[-1], test_perf))
else:
f.write("\n")
if __name__ == '__main__':
main()