forked from Elsaam2y/DINet_optimized
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
306 lines (284 loc) · 11.9 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import concurrent.futures
import glob
# from utils.deep_speech import DeepSpeech
import logging
import os
import random
import subprocess
import time
from collections import OrderedDict
from timeit import default_timer
import cv2
import numpy as np
import torch
from config.config import DINetInferenceOptions
from models.DINet import DINet
from utils.data_processing import compute_crop_radius, load_landmark_openface
from utils.wav2vec import Wav2VecFeatureExtractor
from utils.wav2vecDS import Wav2vecDS
# Set up logging configuration
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
# Create an instances of the Wav2VecFeatureExtractor and Wav2vecDS classes
feature_extractor = Wav2VecFeatureExtractor()
audio_mapping = Wav2vecDS()
# Frames extraction took 29.91 sec
def extract_frames_from_video(video_path, save_dir):
videoCapture = cv2.VideoCapture(video_path)
fps = videoCapture.get(cv2.CAP_PROP_FPS)
if int(fps) != 25:
print(
"warning: the input video is not 25 fps, it would be better to trans it to 25 fps!"
)
frames = int(videoCapture.get(cv2.CAP_PROP_FRAME_COUNT))
frame_height = int(videoCapture.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_width = int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH))
os.makedirs(save_dir, exist_ok=True)
# Construct the ffmpeg command
ffmpeg_command = ["ffmpeg", "-i", video_path, os.path.join(save_dir, "%06d.png")]
# Run the ffmpeg command
subprocess.run(
ffmpeg_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True
)
return frame_width, frame_height
if __name__ == "__main__":
start_process = default_timer()
# load config
opt = DINetInferenceOptions().parse_args()
if not os.path.exists(opt.source_video_path):
raise ValueError("wrong video path : {}".format(opt.source_video_path))
if not os.path.exists(opt.source_openface_landmark_path):
raise ValueError(
"wrong openface stats path : {}".format(opt.source_openface_landmark_path)
)
# extract frames from source video
logging.info("extracting frames from video: %s", opt.source_video_path)
start_time = time.time()
video_frame_dir = opt.source_video_path.replace(".mp4", "")
if not os.path.exists(video_frame_dir):
os.mkdir(video_frame_dir)
video_size = extract_frames_from_video(opt.source_video_path, video_frame_dir)
end_time = time.time()
logging.info(f"Frames extraction took {end_time - start_time:.2f} sec.")
# extract audio features using Hubert Model from Pytorch
logging.info("extracting audio speech features from : %s", opt.driving_audio_path)
start_time = time.time()
ds_feature = feature_extractor.compute_audio_feature(
opt.driving_audio_path
) # Audio features extraction took 1.42 sec.
logging.info("Mapping Audio features")
start_time_mapping = time.time()
ds_feature = audio_mapping.mapping(ds_feature)
end_time_mapping = time.time()
logging.info(
f"Mapping audio features took {end_time_mapping - start_time_mapping:.2f} sec."
)
res_frame_length = ds_feature.shape[0]
ds_feature_padding = np.pad(ds_feature, ((2, 2), (0, 0)), mode="edge")
end_time = time.time()
logging.info(f"Audio features extraction took {end_time - start_time:.2f} sec.")
# load facial landmarks
logging.info(
"loading facial landmarks from : %s", opt.source_openface_landmark_path
)
if not os.path.exists(opt.source_openface_landmark_path):
raise ValueError(
"wrong facial landmark path :%s", opt.source_openface_landmark_path
)
video_landmark_data = load_landmark_openface(
opt.source_openface_landmark_path
).astype(int)
# align frame with driving audio
logging.info("aligning frames with driving audio")
video_frame_path_list = glob.glob(os.path.join(video_frame_dir, "*.png"))
if len(video_frame_path_list) != video_landmark_data.shape[0]:
raise ValueError("video frames are misaligned with detected landmarks")
video_frame_path_list.sort()
video_frame_path_list_cycle = video_frame_path_list + video_frame_path_list[::-1]
video_landmark_data_cycle = np.concatenate(
[video_landmark_data, np.flip(video_landmark_data, 0)], 0
)
video_frame_path_list_cycle_length = len(video_frame_path_list_cycle)
if video_frame_path_list_cycle_length >= res_frame_length:
res_video_frame_path_list = video_frame_path_list_cycle[:res_frame_length]
res_video_landmark_data = video_landmark_data_cycle[:res_frame_length, :, :]
else:
divisor = res_frame_length // video_frame_path_list_cycle_length
remainder = res_frame_length % video_frame_path_list_cycle_length
res_video_frame_path_list = (
video_frame_path_list_cycle * divisor
+ video_frame_path_list_cycle[:remainder]
)
res_video_landmark_data = np.concatenate(
[video_landmark_data_cycle] * divisor
+ [video_landmark_data_cycle[:remainder, :, :]],
0,
)
res_video_frame_path_list_pad = (
[video_frame_path_list_cycle[0]] * 2
+ res_video_frame_path_list
+ [video_frame_path_list_cycle[-1]] * 2
)
res_video_landmark_data_pad = np.pad(
res_video_landmark_data, ((2, 2), (0, 0), (0, 0)), mode="edge"
)
assert (
ds_feature_padding.shape[0]
== len(res_video_frame_path_list_pad)
== res_video_landmark_data_pad.shape[0]
)
pad_length = ds_feature_padding.shape[0]
# randomly select 5 reference images
logging.info("selecting five reference images")
ref_img_list = []
resize_w = int(opt.mouth_region_size + opt.mouth_region_size // 4)
resize_h = int((opt.mouth_region_size // 2) * 3 + opt.mouth_region_size // 8)
ref_index_list = random.sample(range(5, len(res_video_frame_path_list_pad) - 2), 5)
for ref_index in ref_index_list:
crop_flag, crop_radius = compute_crop_radius(
video_size, res_video_landmark_data_pad[ref_index - 5 : ref_index, :, :]
)
if not crop_flag:
raise ValueError(
"our method cannot handle videos with large changes in facial size!!"
)
crop_radius_1_4 = crop_radius // 4
ref_img = cv2.imread(res_video_frame_path_list_pad[ref_index - 3])[:, :, ::-1]
ref_landmark = res_video_landmark_data_pad[ref_index - 3, :, :]
ref_img_crop = ref_img[
ref_landmark[29, 1]
- crop_radius : ref_landmark[29, 1]
+ crop_radius * 2
+ crop_radius_1_4,
ref_landmark[33, 0]
- crop_radius
- crop_radius_1_4 : ref_landmark[33, 0]
+ crop_radius
+ crop_radius_1_4,
:,
]
ref_img_crop = cv2.resize(ref_img_crop, (resize_w, resize_h))
ref_img_crop = ref_img_crop / 255.0
ref_img_list.append(ref_img_crop)
ref_video_frame = np.concatenate(ref_img_list, 2)
ref_img_tensor = (
torch.from_numpy(ref_video_frame).permute(2, 0, 1).unsqueeze(0).float().cuda()
)
# load pretrained model weight
logging.info("loading pretrained model from: %s", opt.pretrained_clip_DINet_path)
model = DINet(opt.source_channel, opt.ref_channel, opt.audio_channel).cuda()
if not os.path.exists(opt.pretrained_clip_DINet_path):
raise ValueError(
"wrong path of pretrained model weight: %s", opt.pretrained_clip_DINet_path
)
state_dict = torch.load(opt.pretrained_clip_DINet_path)["state_dict"]["net_g"]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove module.
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
model.eval()
############################################## inference frame by frame ##############################################
logging.info("generating result video")
if not os.path.exists(opt.res_video_dir):
os.mkdir(opt.res_video_dir)
res_video_path = os.path.join(
opt.res_video_dir,
os.path.basename(opt.source_video_path)[:-4] + "_facial_dubbing.mp4",
)
if os.path.exists(res_video_path):
os.remove(res_video_path)
res_face_path = res_video_path.replace("_facial_dubbing.mp4", "_synthetic_face.mp4")
if os.path.exists(res_face_path):
os.remove(res_face_path)
videowriter = cv2.VideoWriter(
res_video_path, cv2.VideoWriter_fourcc(*"XVID"), 25, video_size
)
videowriter_face = cv2.VideoWriter(
res_face_path, cv2.VideoWriter_fourcc(*"XVID"), 25, (resize_w, resize_h)
)
for clip_end_index in range(5, pad_length, 1):
logging.info("synthesizing frame %d/%d", clip_end_index - 5, pad_length - 5)
crop_flag, crop_radius = compute_crop_radius(
video_size,
res_video_landmark_data_pad[clip_end_index - 5 : clip_end_index, :, :],
random_scale=1.05,
)
if not crop_flag:
raise (
"our method can not handle videos with large change of facial size!!"
)
crop_radius_1_4 = crop_radius // 4
frame_data = cv2.imread(res_video_frame_path_list_pad[clip_end_index - 3])[
:, :, ::-1
]
frame_landmark = res_video_landmark_data_pad[clip_end_index - 3, :, :]
crop_frame_data = frame_data[
frame_landmark[29, 1]
- crop_radius : frame_landmark[29, 1]
+ crop_radius * 2
+ crop_radius_1_4,
frame_landmark[33, 0]
- crop_radius
- crop_radius_1_4 : frame_landmark[33, 0]
+ crop_radius
+ crop_radius_1_4,
:,
]
crop_frame_h, crop_frame_w = crop_frame_data.shape[0], crop_frame_data.shape[1]
crop_frame_data = cv2.resize(
crop_frame_data, (resize_w, resize_h)
) # [32:224, 32:224, :]
crop_frame_data = crop_frame_data / 255.0
crop_frame_data[
opt.mouth_region_size // 2 : opt.mouth_region_size // 2
+ opt.mouth_region_size,
opt.mouth_region_size // 8 : opt.mouth_region_size // 8
+ opt.mouth_region_size,
:,
] = 0
crop_frame_tensor = (
torch.from_numpy(crop_frame_data)
.float()
.cuda()
.permute(2, 0, 1)
.unsqueeze(0)
)
deepspeech_tensor = (
torch.from_numpy(ds_feature_padding[clip_end_index - 5 : clip_end_index, :])
.permute(1, 0)
.unsqueeze(0)
.float()
.cuda()
)
with torch.no_grad():
pre_frame = model(crop_frame_tensor, ref_img_tensor, deepspeech_tensor)
pre_frame = (
pre_frame.squeeze(0).permute(1, 2, 0).detach().cpu().numpy() * 255
)
videowriter_face.write(pre_frame[:, :, ::-1].copy().astype(np.uint8))
pre_frame_resize = cv2.resize(pre_frame, (crop_frame_w, crop_frame_h))
frame_data[
frame_landmark[29, 1]
- crop_radius : frame_landmark[29, 1]
+ crop_radius * 2,
frame_landmark[33, 0]
- crop_radius
- crop_radius_1_4 : frame_landmark[33, 0]
+ crop_radius
+ crop_radius_1_4,
:,
] = pre_frame_resize[: crop_radius * 3, :, :]
videowriter.write(frame_data[:, :, ::-1])
videowriter.release()
videowriter_face.release()
video_add_audio_path = res_video_path.replace(".mp4", "_add_audio.mp4")
if os.path.exists(video_add_audio_path):
os.remove(video_add_audio_path)
cmd = "ffmpeg -i {} -i {} -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 {}".format(
res_video_path, opt.driving_audio_path, video_add_audio_path
)
subprocess.call(cmd, shell=True)
end_process = default_timer()
logging.info(f"Video generation took {end_process - start_process:.2f} sec.")