forked from AarohiSingla/SRGAN_CustomDataset
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsrgan_model.py
74 lines (47 loc) · 2.65 KB
/
srgan_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import torch.nn as nn
from ops import *
class Generator(nn.Module):
def __init__(self, img_feat = 3, n_feats = 64, kernel_size = 3, num_block = 16, act = nn.PReLU(), scale=4):
super(Generator, self).__init__()
self.conv01 = conv(in_channel = img_feat, out_channel = n_feats, kernel_size = 9, BN = False, act = act)
resblocks = [ResBlock(channels = n_feats, kernel_size = 3, act = act) for _ in range(num_block)]
self.body = nn.Sequential(*resblocks)
self.conv02 = conv(in_channel = n_feats, out_channel = n_feats, kernel_size = 3, BN = True, act = None)
if(scale == 4):
upsample_blocks = [Upsampler(channel = n_feats, kernel_size = 3, scale = 2, act = act) for _ in range(2)]
else:
upsample_blocks = [Upsampler(channel = n_feats, kernel_size = 3, scale = scale, act = act)]
self.tail = nn.Sequential(*upsample_blocks)
self.last_conv = conv(in_channel = n_feats, out_channel = img_feat, kernel_size = 3, BN = False, act = nn.Tanh())
def forward(self, x):
x = self.conv01(x)
_skip_connection = x
x = self.body(x)
x = self.conv02(x)
feat = x + _skip_connection
x = self.tail(feat)
x = self.last_conv(x)
return x, feat
class Discriminator(nn.Module):
def __init__(self, img_feat = 3, n_feats = 64, kernel_size = 3, act = nn.LeakyReLU(inplace = True), num_of_block = 3, patch_size = 96):
super(Discriminator, self).__init__()
self.act = act
self.conv01 = conv(in_channel = img_feat, out_channel = n_feats, kernel_size = 3, BN = False, act = self.act)
self.conv02 = conv(in_channel = n_feats, out_channel = n_feats, kernel_size = 3, BN = False, act = self.act, stride = 2)
body = [discrim_block(in_feats = n_feats * (2 ** i), out_feats = n_feats * (2 ** (i + 1)), kernel_size = 3, act = self.act) for i in range(num_of_block)]
self.body = nn.Sequential(*body)
self.linear_size = ((patch_size // (2 ** (num_of_block + 1))) ** 2) * (n_feats * (2 ** num_of_block))
tail = []
tail.append(nn.Linear(self.linear_size, 1024))
tail.append(self.act)
tail.append(nn.Linear(1024, 1))
tail.append(nn.Sigmoid())
self.tail = nn.Sequential(*tail)
def forward(self, x):
x = self.conv01(x)
x = self.conv02(x)
x = self.body(x)
x = x.view(-1, self.linear_size)
x = self.tail(x)
return x