-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_shorter_term.py
195 lines (151 loc) · 5.96 KB
/
train_shorter_term.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Given the statistics for past 3 hours,
# make traffic predictions for the next 4 hours
import numpy as np
import random
import math
from keras.models import Sequential, load_model
from keras.layers import Conv1D, MaxPooling1D, GlobalAveragePooling1D, Embedding, LSTM, Dropout, Dense, Flatten
from keras.constraints import max_norm
from keras.callbacks import EarlyStopping, ModelCheckpoint
epochs = 1000
batch_size = 30
validation_split = 0.2
script_name = 'shorter_term'
model_types = ['conv1d_1', 'conv1d_2', 'dense_1', 'dense_2', 'dense_3', 'dense_4', 'lstm_1', 'lstm_2']
active_model = 'dense_4'
source_csv = 'hki_liikennemaarat.csv'
source_csv_delimiter = ';'
stops = ['A01', 'A02', 'A03', 'A04', 'A05', 'A06', 'A07', 'A08', 'A09', 'B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B09', 'B10', 'B11', 'B12', 'C01', 'C02', 'C03', 'C04', 'C05', 'C06', 'C07', 'C08', 'C09', 'C10', 'C11', 'C12', 'C13', 'C14', 'C15', 'C16', 'C17', 'C18', 'D01', 'D02', 'D03', 'D04', 'D05', 'D06', 'D07', 'D08', 'D09', 'D10', 'D11', 'D12', 'D13', 'F01', 'F02', 'F03', 'F04', 'F05', 'F06']
# fix random seed for reproducibility
np.random.seed(7)
source_data = np.genfromtxt(source_csv, delimiter=source_csv_delimiter, skip_header=1, usecols=[0,4,5,7,8,9,10,11,12,13], encoding='iso-8859-1', unpack=True, dtype=['U3', 'U32', 'uint32', 'uint32', 'uint8', 'uint16', 'uint16', 'uint16', 'uint16', 'uint16', 'uint16', 'uint16', 'uint16', 'uint16', 'uint16'])
print(source_data[25000])
traffic_data = []
for i in range(len(source_data)):
# Only get data on the hour, discard the rest
if(source_data[i][2] % 100 == 0):
traffic_data.append([
stops.index(source_data[i][0]) / len(stops),
source_data[i][1] - 1,
source_data[i][2] / 2400,
source_data[i][3] / 5000,
source_data[i][4] / 1000,
source_data[i][5] / 100,
source_data[i][6] / 250,
source_data[i][7] / 250,
source_data[i][8] / 250,
source_data[i][9] / 50
])
print(traffic_data[10000])
# Get training and test data
trainX = []
trainY = []
# Generation: get current (now) traffic data
# and output is the future data in 1 hour,
# 2 hours, 3 hours and 4 hours
for i in range(len(traffic_data)):
# time has to be in between 00:00 and 19:00
if(traffic_data[i][2] <= (19/24)):
trainX.append(traffic_data[i])
trainY.append([
traffic_data[i+1][3],
traffic_data[i+1][4],
traffic_data[i+1][5],
traffic_data[i+1][6],
traffic_data[i+1][7],
traffic_data[i+1][8],
traffic_data[i+1][9],
traffic_data[i+2][3],
traffic_data[i+2][4],
traffic_data[i+2][5],
traffic_data[i+2][6],
traffic_data[i+2][7],
traffic_data[i+2][8],
traffic_data[i+2][9],
traffic_data[i+3][3],
traffic_data[i+3][4],
traffic_data[i+3][5],
traffic_data[i+3][6],
traffic_data[i+3][7],
traffic_data[i+3][8],
traffic_data[i+3][9],
traffic_data[i+4][3],
traffic_data[i+4][4],
traffic_data[i+4][5],
traffic_data[i+4][6],
traffic_data[i+4][7],
traffic_data[i+4][8],
traffic_data[i+4][9]
])
trainX = np.array(trainX)
trainY = np.array(trainY)
# make it divisable by batch size
remainder = len(trainX) % batch_size
if remainder > 0:
trainX = trainX[:-remainder]
trainY = trainY[:-remainder]
print(trainX.shape)
print(trainY.shape)
print("Active model is: " + active_model)
# create and fit model
model = Sequential()
if(active_model == 'conv1d_1'):
trainX = np.expand_dims(trainX, axis=2)
model.add(Conv1D(input_shape=(10, 1), filters=200, kernel_size=2, activation='relu'))
model.add(MaxPooling1D(2))
model.add(Dropout(0.5))
model.add(Conv1D(filters=500, kernel_size=1, activation='relu'))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(28, activation='sigmoid'))
if(active_model == 'conv1d_2'):
trainX = np.expand_dims(trainX, axis=2)
model.add(Conv1D(input_shape=(10, 1), filters=200, kernel_size=4, activation='relu'))
model.add(MaxPooling1D(2))
model.add(Dropout(0.5))
model.add(Conv1D(filters=500, kernel_size=2, activation='relu'))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(28, activation='sigmoid'))
elif(active_model == 'dense_1'):
model.add(Dense(30, input_shape=(10, ), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(100, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(28, activation='sigmoid'))
elif(active_model == 'dense_2'):
model.add(Dense(40, input_shape=(10, ), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(200, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(28, activation='sigmoid'))
elif(active_model == 'dense_3'):
model.add(Dense(40, input_shape=(10, ), activation='linear'))
model.add(Dropout(0.5))
model.add(Dense(100, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(28, activation='relu'))
elif(active_model == 'dense_4'):
model.add(Dense(300, input_shape=(10, ), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(800, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(280, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(28, activation='sigmoid'))
elif(active_model == 'lstm_1'):
trainX = np.expand_dims(trainX, axis=2)
model.add(LSTM(32, input_shape=(10, 1), return_sequences=True, activation='relu'))
model.add(Dropout(0.5))
model.add(LSTM(32))
model.add(Dropout(0.5))
model.add(Dense(28, activation='sigmoid'))
elif(active_model == 'lstm_2'):
trainX = np.expand_dims(trainX, axis=2)
model.add(LSTM(28, input_shape=(10, 1)))
model.add(Dropout(0.5))
model.add(Dense(28, activation='sigmoid'))
model.compile(loss='mae', optimizer='adam')
earlystopper = EarlyStopping(monitor='val_loss', verbose=1, patience=5)
checkpointer = ModelCheckpoint(filepath=script_name + '_' + active_model + '.h5', verbose=1, save_best_only=True)
model.fit(trainX, trainY, epochs=epochs, batch_size=batch_size, validation_split=validation_split, callbacks=[checkpointer, earlystopper])