-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMIXREG_ImpalaCnn.py
106 lines (82 loc) · 3.98 KB
/
MIXREG_ImpalaCnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from stable_baselines.common.tf_layers import linear
from stable_baselines.common.policies import ActorCriticPolicy
import numpy as np
import tensorflow as tf
def build_impala_cnn(scaled_images, depths=[16,32,32], dense=tf.layers.dense, use_bn=False, randcnn=False, **conv_kwargs):
"""
Model used in the paper "IMPALA: Scalable Distributed Deep-RL with
Importance Weighted Actor-Learner Architectures" https://arxiv.org/abs/1802.01561
"""
layer_num = 0
def get_layer_num_str():
nonlocal layer_num
num_str = str(layer_num)
layer_num += 1
return num_str
def conv_layer(out, depth):
out = tf.layers.conv2d(out, depth, 3, padding='same', name='layer_' + get_layer_num_str())
if use_bn:
# always use train mode BN
out = tf.layers.batch_normalization(out, center=True, scale=True, training=True)
return out
def residual_block(inputs):
depth = inputs.get_shape()[-1].value
out = tf.nn.relu(inputs)
out = conv_layer(out, depth)
out = tf.nn.relu(out)
out = conv_layer(out, depth)
return out + inputs
def conv_sequence(inputs, depth):
out = conv_layer(inputs, depth)
out = tf.layers.max_pooling2d(out, pool_size=3, strides=2, padding='same')
out = residual_block(out)
out = residual_block(out)
return out
#scaling (don't need since stable-baselines scales for us)
#out = tf.cast(unscaled_images, tf.float32) / 255.
out = scaled_images
if randcnn:
out = tf.layers.conv2d(out, 3, 3, padding='same',
kernel_initializer=tf.initializers.glorot_normal(),
trainable=False,
name='randcnn')
for depth in depths:
out = conv_sequence(out, depth)
out = tf.layers.flatten(out)
out = tf.nn.relu(out)
out = dense(out, 256, activation=tf.nn.relu, name='layer_' + get_layer_num_str())
return out
# ImpalaCNN Policy network with MIXREG
class ImpalaCnn(ActorCriticPolicy):
def __init__(self, sess, ob_space, ac_space, n_env, n_steps, n_batch, reuse=False, mix_alpha=0.2, **kwargs):
super(ImpalaCnn, self).__init__(sess, ob_space, ac_space, n_env, n_steps, n_batch, reuse=reuse, scale=True)
###----MIXREG IMPLEMENTATION---###
extra_tensors = {}
COEFF = tf.placeholder(tf.float32, [None])
INDICES = tf.placeholder(tf.int32, [None])
OTHER_INDICES = tf.placeholder(tf.int32, [None])
coeff = tf.reshape(COEFF, (-1, 1, 1, 1))
extra_tensors['coeff'] = COEFF
extra_tensors['indices'] = INDICES
extra_tensors['other_indices'] = OTHER_INDICES
self.__dict__.update(extra_tensors)
###-----------------------------###
with tf.variable_scope("model", reuse=reuse):
extracted_features = build_impala_cnn(self.processed_obs, **kwargs)
pi_latent = vf_latent = extracted_features
self._value_fn = linear(vf_latent, 'vf', 1)
self._proba_distribution, self._policy, self.q_value = \
self.pdtype.proba_distribution_from_latent(pi_latent, vf_latent, init_scale=0.01)
self._setup_init()
def step(self, obs, state=None, mask=None, deterministic=False):
if deterministic:
action, value, neglogp = self.sess.run([self.deterministic_action, self.value_flat, self.neglogp],
{self.obs_ph: obs})
else:
action, value, neglogp = self.sess.run([self.action, self.value_flat, self.neglogp],
{self.obs_ph: obs})
return action, value, self.initial_state, neglogp
def proba_step(self, obs, state=None, mask=None):
return self.sess.run(self.policy_proba, {self.obs_ph: obs})
def value(self, obs, state=None, mask=None):
return self.sess.run(self.value_flat, {self.obs_ph: obs})