forked from google-research/electra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_finetuning.py
323 lines (285 loc) · 12.4 KB
/
run_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fine-tunes an ELECTRA model on a downstream task."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import collections
import json
import tensorflow.compat.v1 as tf
import configure_finetuning
from finetune import preprocessing
from finetune import task_builder
from model import modeling
from model import optimization
from util import training_utils
from util import utils
class FinetuningModel(object):
"""Finetuning model with support for multi-task training."""
def __init__(self, config: configure_finetuning.FinetuningConfig, tasks,
is_training, features, num_train_steps):
# Create a shared transformer encoder
bert_config = training_utils.get_bert_config(config)
self.bert_config = bert_config
if config.debug:
bert_config.num_hidden_layers = 3
bert_config.hidden_size = 144
bert_config.intermediate_size = 144 * 4
bert_config.num_attention_heads = 4
assert config.max_seq_length <= bert_config.max_position_embeddings
bert_model = modeling.BertModel(
bert_config=bert_config,
is_training=is_training,
input_ids=features["input_ids"],
input_mask=features["input_mask"],
token_type_ids=features["segment_ids"],
use_one_hot_embeddings=config.use_tpu,
embedding_size=config.embedding_size)
percent_done = (tf.cast(tf.train.get_or_create_global_step(), tf.float32) /
tf.cast(num_train_steps, tf.float32))
# Add specific tasks
self.outputs = {"task_id": features["task_id"]}
losses = []
for task in tasks:
with tf.variable_scope("task_specific/" + task.name):
task_losses, task_outputs = task.get_prediction_module(
bert_model, features, is_training, percent_done)
losses.append(task_losses)
self.outputs[task.name] = task_outputs
self.loss = tf.reduce_sum(
tf.stack(losses, -1) *
tf.one_hot(features["task_id"], len(config.task_names)))
def model_fn_builder(config: configure_finetuning.FinetuningConfig, tasks,
num_train_steps, pretraining_config=None):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params):
"""The `model_fn` for TPUEstimator."""
utils.log("Building model...")
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
model = FinetuningModel(
config, tasks, is_training, features, num_train_steps)
# Load pre-trained weights from checkpoint
init_checkpoint = config.init_checkpoint
if pretraining_config is not None:
init_checkpoint = tf.train.latest_checkpoint(pretraining_config.model_dir)
utils.log("Using checkpoint", init_checkpoint)
tvars = tf.trainable_variables()
scaffold_fn = None
if init_checkpoint:
assignment_map, _ = modeling.get_assignment_map_from_checkpoint(
tvars, init_checkpoint)
if config.use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
# Build model for training or prediction
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
model.loss, config.learning_rate, num_train_steps,
weight_decay_rate=config.weight_decay_rate,
use_tpu=config.use_tpu,
warmup_proportion=config.warmup_proportion,
layerwise_lr_decay_power=config.layerwise_lr_decay,
n_transformer_layers=model.bert_config.num_hidden_layers
)
output_spec = tf.estimator.tpu.TPUEstimatorSpec(
mode=mode,
loss=model.loss,
train_op=train_op,
scaffold_fn=scaffold_fn,
training_hooks=[training_utils.ETAHook(
{} if config.use_tpu else dict(loss=model.loss),
num_train_steps, config.iterations_per_loop, config.use_tpu, 10)])
else:
assert mode == tf.estimator.ModeKeys.PREDICT
output_spec = tf.estimator.tpu.TPUEstimatorSpec(
mode=mode,
predictions=utils.flatten_dict(model.outputs),
scaffold_fn=scaffold_fn)
utils.log("Building complete")
return output_spec
return model_fn
class ModelRunner(object):
"""Fine-tunes a model on a supervised task."""
def __init__(self, config: configure_finetuning.FinetuningConfig, tasks,
pretraining_config=None):
self._config = config
self._tasks = tasks
self._preprocessor = preprocessing.Preprocessor(config, self._tasks)
is_per_host = tf.estimator.tpu.InputPipelineConfig.PER_HOST_V2
tpu_cluster_resolver = None
if config.use_tpu and config.tpu_name:
tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
config.tpu_name, zone=config.tpu_zone, project=config.gcp_project)
tpu_config = tf.estimator.tpu.TPUConfig(
iterations_per_loop=config.iterations_per_loop,
num_shards=config.num_tpu_cores,
per_host_input_for_training=is_per_host,
tpu_job_name=config.tpu_job_name)
run_config = tf.estimator.tpu.RunConfig(
cluster=tpu_cluster_resolver,
model_dir=config.model_dir,
save_checkpoints_steps=config.save_checkpoints_steps,
save_checkpoints_secs=None,
tpu_config=tpu_config)
if self._config.do_train:
(self._train_input_fn,
self.train_steps) = self._preprocessor.prepare_train()
else:
self._train_input_fn, self.train_steps = None, 0
model_fn = model_fn_builder(
config=config,
tasks=self._tasks,
num_train_steps=self.train_steps,
pretraining_config=pretraining_config)
self._estimator = tf.estimator.tpu.TPUEstimator(
use_tpu=config.use_tpu,
model_fn=model_fn,
config=run_config,
train_batch_size=config.train_batch_size,
eval_batch_size=config.eval_batch_size,
predict_batch_size=config.predict_batch_size)
def train(self):
utils.log("Training for {:} steps".format(self.train_steps))
self._estimator.train(
input_fn=self._train_input_fn, max_steps=self.train_steps)
def evaluate(self):
return {task.name: self.evaluate_task(task) for task in self._tasks}
def evaluate_task(self, task, split="dev", return_results=True):
"""Evaluate the current model."""
utils.log("Evaluating", task.name)
eval_input_fn, _ = self._preprocessor.prepare_predict([task], split)
results = self._estimator.predict(input_fn=eval_input_fn,
yield_single_examples=True)
scorer = task.get_scorer()
for r in results:
if r["task_id"] != len(self._tasks): # ignore padding examples
r = utils.nest_dict(r, self._config.task_names)
scorer.update(r[task.name])
if return_results:
utils.log(task.name + ": " + scorer.results_str())
utils.log()
return dict(scorer.get_results())
else:
return scorer
def write_classification_outputs(self, tasks, trial, split):
"""Write classification predictions to disk."""
utils.log("Writing out predictions for", tasks, split)
predict_input_fn, _ = self._preprocessor.prepare_predict(tasks, split)
results = self._estimator.predict(input_fn=predict_input_fn,
yield_single_examples=True)
# task name -> eid -> model-logits
logits = collections.defaultdict(dict)
for r in results:
if r["task_id"] != len(self._tasks):
r = utils.nest_dict(r, self._config.task_names)
task_name = self._config.task_names[r["task_id"]]
logits[task_name][r[task_name]["eid"]] = (
r[task_name]["logits"] if "logits" in r[task_name]
else r[task_name]["predictions"])
for task_name in logits:
utils.log("Pickling predictions for {:} {:} examples ({:})".format(
len(logits[task_name]), task_name, split))
if trial <= self._config.n_writes_test:
utils.write_pickle(logits[task_name], self._config.test_predictions(
task_name, split, trial))
def write_results(config: configure_finetuning.FinetuningConfig, results):
"""Write evaluation metrics to disk."""
utils.log("Writing results to", config.results_txt)
utils.mkdir(config.results_txt.rsplit("/", 1)[0])
utils.write_pickle(results, config.results_pkl)
with tf.io.gfile.GFile(config.results_txt, "w") as f:
results_str = ""
for trial_results in results:
for task_name, task_results in trial_results.items():
if task_name == "time" or task_name == "global_step":
continue
results_str += task_name + ": " + " - ".join(
["{:}: {:.2f}".format(k, v)
for k, v in task_results.items()]) + "\n"
f.write(results_str)
utils.write_pickle(results, config.results_pkl)
def run_finetuning(config: configure_finetuning.FinetuningConfig):
"""Run finetuning."""
# Setup for training
results = []
trial = 1
heading_info = "model={:}, trial {:}/{:}".format(
config.model_name, trial, config.num_trials)
heading = lambda msg: utils.heading(msg + ": " + heading_info)
heading("Config")
utils.log_config(config)
generic_model_dir = config.model_dir
tasks = task_builder.get_tasks(config)
# Train and evaluate num_trials models with different random seeds
while config.num_trials < 0 or trial <= config.num_trials:
config.model_dir = generic_model_dir + "_" + str(trial)
if config.do_train:
utils.rmkdir(config.model_dir)
model_runner = ModelRunner(config, tasks)
if config.do_train:
heading("Start training")
model_runner.train()
utils.log()
if config.do_eval:
heading("Run dev set evaluation")
results.append(model_runner.evaluate())
write_results(config, results)
if config.write_test_outputs and trial <= config.n_writes_test:
heading("Running on the test set and writing the predictions")
for task in tasks:
# Currently only writing preds for GLUE and SQuAD 2.0 is supported
if task.name in ["cola", "mrpc", "mnli", "sst", "rte", "qnli", "qqp",
"sts"]:
for split in task.get_test_splits():
model_runner.write_classification_outputs([task], trial, split)
elif task.name == "squad":
scorer = model_runner.evaluate_task(task, "test", False)
scorer.write_predictions()
preds = utils.load_json(config.qa_preds_file("squad"))
null_odds = utils.load_json(config.qa_na_file("squad"))
for q, _ in preds.items():
if null_odds[q] > config.qa_na_threshold:
preds[q] = ""
utils.write_json(preds, config.test_predictions(
task.name, "test", trial))
else:
utils.log("Skipping task", task.name,
"- writing predictions is not supported for this task")
if trial != config.num_trials and (not config.keep_all_models):
utils.rmrf(config.model_dir)
trial += 1
def main():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("--data-dir", required=True,
help="Location of data files (model weights, etc).")
parser.add_argument("--model-name", required=True,
help="The name of the model being fine-tuned.")
parser.add_argument("--hparams", default="{}",
help="JSON dict of model hyperparameters.")
args = parser.parse_args()
if args.hparams.endswith(".json"):
hparams = utils.load_json(args.hparams)
else:
hparams = json.loads(args.hparams)
tf.logging.set_verbosity(tf.logging.ERROR)
run_finetuning(configure_finetuning.FinetuningConfig(
args.model_name, args.data_dir, **hparams))
if __name__ == "__main__":
main()