forked from bgstaal/multipleWindow3dScene
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.js
376 lines (322 loc) · 11.1 KB
/
main.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import WindowManager from './WindowManager.js'
const t = THREE;
let camera, scene, renderer, world;
let near, far;
let pixR = window.devicePixelRatio ? window.devicePixelRatio : 1;
let spheres = [];
let sceneOffsetTarget = {x: 0, y: 0};
let sceneOffset = {x: 0, y: 0};
let today = new Date();
today.setHours(0);
today.setMinutes(0);
today.setSeconds(0);
today.setMilliseconds(0);
today = today.getTime();
let internalTime = getTime();
let windowManager;
let initialized = false;
// get time in seconds since beginning of the day (so that all windows use the same time)
function getTime ()
{
return (new Date().getTime() - today) / 1000.0;
}
if (new URLSearchParams(window.location.search).get("clear"))
{
localStorage.clear();
}
else
{
// this code is essential to circumvent that some browsers preload the content of some pages before you actually hit the url
document.addEventListener("visibilitychange", () =>
{
if (document.visibilityState != 'hidden' && !initialized)
{
init();
}
});
window.onload = () => {
if (document.visibilityState != 'hidden')
{
init();
}
};
function init ()
{
initialized = true;
// add a short timeout because window.offsetX reports wrong values before a short period
setTimeout(() => {
setupScene();
setupWindowManager();
resize();
updateWindowShape(false);
render();
window.addEventListener('resize', resize);
}, 500)
}
function setupScene ()
{
camera = new t.OrthographicCamera(0, 0, window.innerWidth, window.innerHeight, -10000, 10000);
camera.position.z = 2.5;
near = camera.position.z - .5;
far = camera.position.z + 0.5;
scene = new t.Scene();
scene.background = new t.Color(0.0);
scene.add( camera );
renderer = new t.WebGLRenderer({antialias: true, depthBuffer: true});
renderer.setPixelRatio(pixR);
world = new t.Object3D();
scene.add(world);
renderer.domElement.setAttribute("id", "scene");
document.body.appendChild( renderer.domElement );
}
function setupWindowManager ()
{
windowManager = new WindowManager();
windowManager.setWinShapeChangeCallback(updateWindowShape);
windowManager.setWinChangeCallback(windowsUpdated);
// here you can add your custom metadata to each windows instance
let metaData = {foo: "bar"};
// this will init the windowmanager and add this window to the centralised pool of windows
windowManager.init(metaData);
// call update windows initially (it will later be called by the win change callback)
windowsUpdated();
}
function windowsUpdated ()
{
updateNumberOfSpheres();
}
function updateNumberOfSpheres()
{
let wins = windowManager.getWindows();
// Remove all existing spheres
spheres.forEach((c) => {
world.remove(c);
});
spheres = [];
// Create a new sphere for each window
for (let i = 0; i < wins.length; i++) {
let win = wins[i];
let c = new t.Color();
c.setHSL(i * 0.1, 1.0, 0.5);
let sphere = new t.Mesh(
new t.SphereGeometry(50 + i * 25, 32, 32),
new t.MeshBasicMaterial({ color: c, wireframe: true })
);
sphere.position.x = win.shape.x + win.shape.w * 0.5;
sphere.position.y = win.shape.y + win.shape.h * 0.5;
'
// Define the Lorenz attractor parameters
const lorenzParams = [
{ equation: 0, params: [10.0, 30.0, 8 / 3] },
{ equation: 1, params: [1.24, 1.1, 4.4, 3.21] },
// Add more Lorenz attractor equations here
];
}
}
function initializeSphere(sphere, params)
{
// Set the initial position of the sphere based on the Lorenz attractor parameters
sphere.position.set(params.initialX, params.initialY, params.initialZ);
// Initialize the trail positions
for (let i = 0; i < trailLength; i++) {
trail.push(sphere.position.clone());
}
}
function updateSpherePosition(sphere, params, t)
{
// Update the sphere position based on the Lorenz attractor equation associated with the parameters
switch (params.equation) {
case 0:
// Lorenz equation
updateLorenzPosition(sphere, params.params, t);
break;
case 1:
// Chen's attractor
updateChenPosition(sphere, params.params, t);
break;
// Add more cases for other Lorenz attractor equations
}
}
function updateLorenzPosition(sphere, params, t) {
// Implement the Lorenz equation to update the sphere position
const [a, b, c] = params;
const x = sphere.position.x;
const y = sphere.position.y;
const z = sphere.position.z;
sphere.position.x += (a * (y - x)) * t;
sphere.position.y += (x * (b - z) - y) * t;
sphere.position.z += (x * y - c * z) * t;
}
function updateChenPosition(sphere, params, t)
{
// Implement Chen's attractor equation to update the sphere position
const [a, b, c, d] = params;
const x = sphere.position.x;
const y = sphere.position.y;
const z = sphere.position.z;
sphere.position.x += (-a * x + b * y) * t;
sphere.position.y += (c * y - x * z) * t;
sphere.position.z += ((x * y) / 3 + d * z) * t;
}
function updateSphereTrail(sphere)
{
// Update the sphere trail positions
// Use the same approach as in the provided Lorenz attractor code
{
/// Calculate timestep
timestep = clock.getElapsedTime().asSeconds();
input_timer += timestep;
clock.restart();
timestep *= speed; // Slow down or speed up time.
// Update position according to chosen equation u
std::vector<float> &m = params[u];
switch (u)
{
case 0:
{
for (unsigned i = 0; i < num_points; i++)
{
point[i].x += static_cast<float>(m[0] * (point[i].y - point[i].x) * timestep);
point[i].y += static_cast<float>((point[i].x * (m[1] - point[i].z) - point[i].y) * timestep);
point[i].z += static_cast<float>((point[i].x * point[i].y - m[2] * point[i].z) * timestep);
}
break;
}
case 1:
{
for (unsigned i = 0; i < num_points; i++)
{
float h1 = 0.5f * (abs(point[i].x + 1) - abs(point[i].x - 1));
float h2 = 0.5f * (abs(point[i].y + 1) - abs(point[i].y - 1));
float h3 = 0.5f * (abs(point[i].z + 1) - abs(point[i].z - 1));
point[i].x += static_cast<float>((-point[i].x + m[0] * h1 - m[3] * h2 - m[3] * h3) * timestep);
point[i].y += static_cast<float>((-point[i].y - m[3] * h1 + m[1] * h2 - m[2] * h3) * timestep);
point[i].z += static_cast<float>((-point[i].z - m[3] * h1 + m[2] * h2 + h3) * timestep);
}
break;
}
case 2:
{
for (unsigned i = 0; i < num_points; i++)
{
point[i].x += static_cast<float>(((point[i].z - m[1]) * point[i].x - m[3] * point[i].y) * timestep);
point[i].y += static_cast<float>((m[3] * point[i].x + (point[i].z - m[1]) * point[i].y) * timestep);
point[i].z += static_cast<float>((m[2] + m[0] * point[i].z - (point[i].z * point[i].z * point[i].z) / 3 - (point[i].x * point[i].x + point[i].y * point[i].y) * (1 + m[4] * point[i].z) + m[5] * point[i].z * point[i].x * point[i].x * point[i].x) * timestep);
}
break;
}
case 3:
{
for (unsigned i = 0; i < num_points; i++)
{
point[i].x += static_cast<float>((point[i].x * (4 - point[i].y) + m[0] * point[i].z) * timestep);
point[i].y += static_cast<float>((-point[i].y * (1 - point[i].x * point[i].x)) * timestep);
point[i].z += static_cast<float>((-point[i].x * (1.5 - point[i].z * m[1]) - 0.05 * point[i].z) * timestep);
}
break;
}
case 4:
{
for (unsigned i = 0; i < num_points; i++)
{
point[i].x += static_cast<float>((m[0] * point[i].x - point[i].y * point[i].z) * timestep * 0.25f);
point[i].y += static_cast<float>((m[1] * point[i].y + point[i].x * point[i].z) * timestep * 0.25f);
point[i].z += static_cast<float>((m[2] * point[i].z + point[i].x * point[i].y / 3) * timestep * 0.25f);
}
break;
}
case 5:
{
for (unsigned i = 0; i < num_points; i++)
{
point[i].x += static_cast<float>((-m[0] * point[i].x - 4 * point[i].y - 4 * point[i].z - point[i].y * point[i].y) * timestep);
point[i].y += static_cast<float>((-m[0] * point[i].y - 4 * point[i].z - 4 * point[i].x - point[i].z * point[i].z) * timestep);
point[i].z += static_cast<float>((-m[0] * point[i].z - 4 * point[i].x - 4 * point[i].y - point[i].x * point[i].x) * timestep);
}
break;
}
case 6:
{
for (unsigned i = 0; i < num_points; i++)
{
point[i].x += static_cast<float>(((1 / m[1] - m[0]) * point[i].x + point[i].z + point[i].x * point[i].y) * timestep);
point[i].y += static_cast<float>((-m[1] * point[i].y - point[i].x * point[i].x) * timestep);
point[i].z += static_cast<float>((-point[i].x - m[2] * point[i].z) * timestep);
}
break;
}
case 7:
{
for (unsigned i = 0; i < num_points; i++)
{
point[i].x += static_cast<float>((-m[0] * point[i].x + point[i].y + 10.0f * point[i].y * point[i].z) * timestep);
point[i].y += static_cast<float>((-point[i].x - 0.4 * point[i].y + 5.0f * point[i].x * point[i].z) * timestep);
point[i].z += static_cast<float>((m[1] * point[i].z - 5.0f * point[i].x * point[i].y) * timestep);
}
break;
}
case 8:
{
for (unsigned i = 0; i < num_points; i++)
{
point[i].x += static_cast<float>((point[i].y) * timestep);
point[i].y += static_cast<float>((-point[i].x + point[i].y * point[i].z) * timestep);
point[i].z += static_cast<float>((m[0] - point[i].y * point[i].y) * timestep);
}
break;
}
case 9:
{
for (unsigned i = 0; i < num_points; i++)
{
point[i].x += static_cast<float>((-m[0] * point[i].x + sin(point[i].y)) * timestep);
point[i].y += static_cast<float>((-m[0] * point[i].y + sin(point[i].z)) * timestep);
point[i].z += static_cast<float>((-m[0] * point[i].z + sin(point[i].x)) * timestep);
}
break;
}
}
}
function updateWindowShape (easing = true)
{
// storing the actual offset in a proxy that we update against in the render function
sceneOffsetTarget = {x: -window.screenX, y: -window.screenY};
if (!easing) sceneOffset = sceneOffsetTarget;
}
function render ()
{
let t = getTime();
windowManager.update();
// calculate the new position based on the delta between current offset and new offset times a falloff value (to create the nice smoothing effect)
let falloff = .05;
sceneOffset.x = sceneOffset.x + ((sceneOffsetTarget.x - sceneOffset.x) * falloff);
sceneOffset.y = sceneOffset.y + ((sceneOffsetTarget.y - sceneOffset.y) * falloff);
// set the world position to the offset
world.position.x = sceneOffset.x;
world.position.y = sceneOffset.y;
let wins = windowManager.getWindows();
// loop through all our spheres and update their positions based on current window positions
for (let i = 0; i < spheres.length; i++)
{
let cube = spheres[i];
let win = wins[i];
let _t = t;// + i * .2;
let posTarget = {x: win.shape.x + (win.shape.w * .5), y: win.shape.y + (win.shape.h * .5)}
cube.position.x = cube.position.x + (posTarget.x - cube.position.x) * falloff;
cube.position.y = cube.position.y + (posTarget.y - cube.position.y) * falloff;
cube.rotation.x = _t * .5;
cube.rotation.y = _t * .3;
};
renderer.render(scene, camera);
requestAnimationFrame(render);
}
// resize the renderer to fit the window size
function resize ()
{
let width = window.innerWidth;
let height = window.innerHeight
camera = new t.OrthographicCamera(0, width, 0, height, -10000, 10000);
camera.updateProjectionMatrix();
renderer.setSize( width, height );
}
}