-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
77 lines (54 loc) · 2.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import os
import torch
import torch.nn as nn
import utils
import argparse
import yaml
import shutil
parser = argparse.ArgumentParser()
parser.add_argument("config_path", help="path to the yml config file")
parser.add_argument("-v", "--verbose", help="verbosely print the process", action="store_true")
args = parser.parse_args()
yml_dict = yaml.load(open(args.config_path))
config_filename = os.path.split(args.config_path)[-1]
LOG_DIR = os.path.join(yml_dict["LOG_DIR"], config_filename.split('.')[0])
os.mkdir(LOG_DIR)
shutil.copy(args.config_path, os.path.join(LOG_DIR, config_filename))
os.environ["CUDA_VISIBLE_DEVICES"] = yml_dict["CUDA_VISIBLE_DEVICES"]
log_file = open(os.path.join(LOG_DIR, "log.txt"), mode="a")
log_writer = utils.LogWriter(log_file)
log_writer.write(text="Start initializing dataset",
verbose=args.verbose)
ds_train, ds_val = utils.getDataset(ds_dict=yml_dict["DATASET"][0])
log_writer.write(text="Finish initializing dataset",
verbose=args.verbose)
dl_train, dl_val = utils.getDataloader(ds_train=ds_train,
ds_val=ds_val,
dl_dict=yml_dict["DATALOADER"])
net = utils.getModel(yml_dict["MODEL"])
loss_fn = utils.getLoss(yml_dict["LOSS"])
optimizer = utils.getOptimizer(net, yml_dict["OPTIMIZER"])
scheduler = utils.getScheduler(optimizer, yml_dict["SCHEDULER"])
NUM_EPOCH = yml_dict["NUM_EPOCH"]
CSV_SAVING_MARGIN = max(NUM_EPOCH // 20, 1)
solver = utils.Solver(net, dl_train, dl_val, loss_fn, optimizer, scheduler, LOG_DIR, log_file, ds_val.classes)
log_writer.write(text="Start training",
verbose=args.verbose)
for i in range(NUM_EPOCH):
log_writer.write(text="Epoch#{}/{}:".format(i + 1, NUM_EPOCH),
verbose=args.verbose)
solver.optimize(verbose=args.verbose)
solver.validate(verbose=args.verbose)
if solver.loss_val_list[-1] <= min(solver.loss_val_list):
solver.save_model("Epoch#{}.th".format(i + 1), verbose=args.verbose)
solver.plot_roc("roc.jpg", model_name=yml_dict["MODEL"]["NAME"], verbose=args.verbose)
solver.update_lr(metric=solver.loss_val_list[-1],
verbose=args.verbose)
if i % CSV_SAVING_MARGIN == 0:
solver.save_loss_csv("loss.csv", verbose=args.verbose)
solver.plot_loss("loss.jpg", verbose=args.verbose)
log_writer.write(text="Finish training",
verbose=args.verbose)
solver.save_loss_csv("loss.csv", verbose=args.verbose)
solver.plot_loss("loss.jpg", verbose=args.verbose)