forked from daerduoCarey/PyTorchEMD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_emd_loss.py
44 lines (36 loc) · 1.18 KB
/
test_emd_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
import numpy as np
import time
from emd import earth_mover_distance
# gt
p1 = torch.from_numpy(np.array([[[1.7, -0.1, 0.1], [0.1, 1.2, 0.3]]], dtype=np.float32)).cuda()
p1 = p1.repeat(3, 1, 1)
p2 = torch.from_numpy(np.array([[[0.3, 1.8, 0.2], [1.2, -0.2, 0.3]]], dtype=np.float32)).cuda()
p2 = p2.repeat(3, 1, 1)
print(p1)
print(p2)
p1.requires_grad = True
p2.requires_grad = True
gt_dist = (((p1[0, 0] - p2[0, 1])**2).sum() + ((p1[0, 1] - p2[0, 0])**2).sum()) / 2 + \
(((p1[1, 0] - p2[1, 1])**2).sum() + ((p1[1, 1] - p2[1, 0])**2).sum()) * 2 + \
(((p1[2, 0] - p2[2, 1])**2).sum() + ((p1[2, 1] - p2[2, 0])**2).sum()) / 3
print('gt_dist: ', gt_dist)
gt_dist.backward()
print(p1.grad)
print(p2.grad)
# emd
p1 = torch.from_numpy(np.array([[[1.7, -0.1, 0.1], [0.1, 1.2, 0.3]]], dtype=np.float32)).cuda()
p1 = p1.repeat(3, 1, 1)
p2 = torch.from_numpy(np.array([[[0.3, 1.8, 0.2], [1.2, -0.2, 0.3]]], dtype=np.float32)).cuda()
p2 = p2.repeat(3, 1, 1)
print(p1)
print(p2)
p1.requires_grad = True
p2.requires_grad = True
d = earth_mover_distance(p1, p2, transpose=False)
print(d)
loss = d[0] / 2 + d[1] * 2 + d[2] / 3
print(loss)
loss.backward()
print(p1.grad)
print(p2.grad)