-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexample.py
61 lines (46 loc) · 1.72 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch.nn as nn
import matplotlib.pyplot as plt
from torch.optim import SGD
from torch.optim.lr_scheduler import CosineAnnealingLR
from src.warmup_scheduler_pytorch.warmup_module import WarmUpScheduler
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv = nn.Conv2d(1, 1, (1, 1))
def forward(self, x):
return self.conv(x)
def get_lr(optimizer):
return [p['lr'] for p in optimizer.param_groups][0]
def run():
model = Model()
optimizer = SGD(model.parameters(), lr=0.1)
lr_scheduler = CosineAnnealingLR(optimizer, T_max=100, eta_min=0.01)
len_dataloader = 50 # assume the len of dataloader is 50
warmup_scheduler = WarmUpScheduler(optimizer, lr_scheduler,
len_loader=len_dataloader,
warmup_steps=100,
warmup_start_lr=0.01,
warmup_mode='linear')
# training
epochs = 100
epoch_lr = [[], []] # epoch, lr
for epoch in range(epochs):
for step in range(len_dataloader):
if not warmup_scheduler.warmup_done:
epoch_lr[0].append(epoch + step / len_dataloader)
epoch_lr[1].append(get_lr(optimizer))
else:
epoch_lr[0].append(epoch)
epoch_lr[1].append(get_lr(optimizer))
# output = model(...)
# loss = loss_fn(output, label)
# loss.backward()
optimizer.step()
optimizer.zero_grad()
warmup_scheduler.step()
plt.plot(*epoch_lr)
plt.xlabel('epoch')
plt.ylabel('lr')
plt.show()
if __name__ == '__main__':
run()