forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_interpolatenan.m
163 lines (140 loc) · 6.36 KB
/
ft_interpolatenan.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
function [dataout] = ft_interpolatenan(cfg, datain)
% FT_INTERPOLATENAN interpolates time series that contains segments of nans obtained
% by replacing artifactual data with nans using, for example, FT_REJECTARTIFACT, or
% by redefining trials with FT_REDEFINETRIAL resulting in trials with gaps.
%
% Use as
% outdata = ft_interpolatenan(cfg, indata)
% where cfg is a configuration structure and the input data is obtained from FT_PREPROCESSING.
%
% The configuration should contain
% cfg.method = string, interpolation method, see INTERP1 (default = 'linear')
% cfg.prewindow = value, length of data prior to interpolation window, in seconds (default = 1)
% cfg.postwindow = value, length of data after interpolation window, in seconds (default = 1)
% cfg.feedback = string, 'no', 'text', 'textbar', 'gui' (default = 'text')
%
% This function only interpolates over time, not over space. If you want to
% interpolate using spatial information, e.g. using neighbouring channels, you should
% use FT_CHANNELREPAIR.
%
% To facilitate data-handling and distributed computing, you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_REJECTARTIFACT, FT_REDEFINETRIAL, FT_CHANNELREPAIR
% Copyright (C) 2003-2020, Jan-Mathijs Schoffelen & Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the initial part deals with parsing the input options and data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar datain
ft_preamble provenance datain
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
datain = ft_checkdata(datain, 'datatype', {'raw+comp', 'raw'}, 'feedback', 'yes', 'hassampleinfo', 'yes');
% get the options
cfg.method = ft_getopt(cfg, 'method', 'linear'); % default is linear, can be 'nearest', 'linear', 'spline', 'pchip', 'cubic', 'v5cubic', 'makima'
cfg.prewindow = ft_getopt(cfg, 'prewindow', 1); % default is 1 second
cfg.postwindow = ft_getopt(cfg, 'postwindow', 1); % default is 1 seconds
cfg.feedback = ft_getopt(cfg, 'feedback', 'etf');
% check if the input is valid
cfg = ft_checkopt(cfg, 'prewindow', 'numericscalar');
cfg = ft_checkopt(cfg, 'postwindow', 'numericscalar');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the actual computation is done in the middle part
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
prewindow = round(cfg.prewindow * datain.fsample); % Express window in samples
postwindow = round(cfg.postwindow * datain.fsample); % Express window in samples
% Start with a copy of the input data
dataout = datain;
% Let users know that the interpolation will start and initialize the progress indicator
ntrl = numel(datain.trial);
nchan = numel(datain.label);
fprintf('Initializing %s interpolation of %d trials\n', cfg.method, ntrl);
ft_progress('init', cfg.feedback, 'Processing trial...');
for i=1:ntrl
ft_progress(i/ntrl, 'Processing trial %d from %d', i, ntrl);
tim = datain.time{i};
for j=1:nchan
dat = datain.trial{i}(j,:);
replace = isnan(dat); % Find samples that have been replaced by nans
if ~any(replace)
continue
end
onset = find(diff([0 replace])>0);
offset = find(diff([replace 0])<0);
for k=1:numel(onset)
begsample = onset(k)-prewindow;
endsample = offset(k)+postwindow;
if begsample<1
ft_warning('not enough samples for prewindow')
begsample = 1;
end
if endsample>numel(dat)
ft_warning('not enough samples for postwindow')
endsample = numel(dat);
end
x = tim(begsample:endsample);
y = dat(begsample:endsample);
xx = x; % this is where we want to know the interpolated values
x = x(~replace(begsample:endsample)); % remove the part that needs to be interpolated
y = y(~replace(begsample:endsample)); % remove the part that needs to be interpolated
yy = interp1(x, y, xx, cfg.method); % this may contain nans
% The default extrapolation behavior of INTERP1 with four input arguments is to
% extrapolate for 'spline', 'pchip' and 'makima', and to use nan for other
% methods.
if begsample==1
% there may be nans at the beginning, replace the data with mean of the values that are not nan
f = find(~isnan(yy), 1, 'first');
yy(1:f-1) = nanmean(yy);
elseif endsample==numel(dat)
% there may be nans at the end, replace the data with mean of the values that are not nan
f = find(~isnan(yy), 1, 'last');
yy(f+1:end) = nanmean(yy);
end
% insert the interpolated data
dataout.trial{i}(j,begsample:endsample) = yy;
end % for all nan-segments
end % for all channels
end % for all trials
ft_progress('close');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% cleanup
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ft_postamble debug
ft_postamble previous datain
ft_postamble provenance dataout
ft_postamble history dataout
ft_postamble savevar dataout