forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_prepare_neighbours.m
496 lines (437 loc) · 19 KB
/
ft_prepare_neighbours.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
function [neighbours, cfg] = ft_prepare_neighbours(cfg, data)
% FT_PREPARE_NEIGHBOURS finds the channel neighbours for spatial clustering
% or interpolation of bad channels. Using the 'distance' method, neighbours
% are based on a minimum neighbourhood distance (in cfg.neighbourdist).
% Using the 'triangulation' method calculates a triangulation based on a 2D
% projection of the sensor positions. The 'template' method loads a default
% template for the given data type. Alternatively, using the 'parcellation'
% method, in combination with an atlas as input data, spatial neighbours
% of parcels are determined, based on the spatial relationship between the
% labeled mesh vertices. Currently, only atlases defined on a triangular
% mesh are supported.
%
% Use as
% neighbours = ft_prepare_neighbours(cfg)
% or
% neighbours = ft_prepare_neighbours(cfg, data)
% with an input data structure with the channels of interest and that
% contains a sensor description, or represents an atlas, see FT_READ_ATLAS
%
% The configuration can contain
% cfg.channel = channels in the data for which neighbours should be determined
% cfg.method = 'distance', 'triangulation' or 'template'
% cfg.template = name of the template file, e.g. CTF275_neighb.mat
% cfg.neighbourdist = number, maximum distance between neighbouring sensors
% (only for 'distance', default is 40 mm)
% cfg.compress = 'yes' or 'no', add extra edges by compressing in the
% x- and y-direction (only for 'triangulation', default is yes)
% cfg.feedback = 'yes' or 'no' (default = 'no')
%
% The 3D sensor positions can be present in the data or can be specified as
% cfg.elec = structure with electrode positions or filename, see FT_READ_SENS
% cfg.grad = structure with gradiometer definition or filename, see FT_READ_SENS
%
% The 2D channel positions can be specified as
% cfg.layout = filename of the layout, see FT_PREPARE_LAYOUT
%
% With an atlas in the input, the method 'parcellation' has the additional
% options
% cfg.parcellation = string that denotes the field in the atlas that is to be used
%
% The output is an array of structures with the "neighbours" which is
% structured like this:
% neighbours(1).label = 'Fz';
% neighbours(1).neighblabel = {'Cz', 'F3', 'F3A', 'FzA', 'F4A', 'F4'};
% neighbours(2).label = 'Cz';
% neighbours(2).neighblabel = {'Fz', 'F4', 'RT', 'RTP', 'P4', 'Pz', 'P3', 'LTP', 'LT', 'F3'};
% neighbours(3).label = 'Pz';
% neighbours(3).neighblabel = {'Cz', 'P4', 'P4P', 'Oz', 'P3P', 'P3'};
% etc.
%
% Note that a channel is not considered to be a neighbour of itself.
%
% See also FT_NEIGHBOURPLOT, FT_PREPARE_LAYOUT, FT_DATATYPE_SENS,
% FT_READ_SENS, FT_READ_ATLAS
% Copyright (C) 2006-2021, Eric Maris, Jorn M. Horschig, Robert Oostenveld,
% Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% the data can be passed as input arguments or can be read from disk
hasdata = exist('data', 'var');
hasatlas = hasdata && (ft_datatype(data, 'mesh+label') || ft_datatype(data, 'volume+label') || ft_datatype(data, 'source+label'));
% these undocumented methods are needed to support some of the high-level FT functions that call this function
if ~isfield(cfg, 'method')
if ~isfield(cfg, 'neighbours')
ft_error('cannot figure out how to construct neighbours, please specify cfg.neighbours or cfg.method and call this function directly')
else
if ischar(cfg.neighbours)
ft_notice('reading neighbours from file %s', cfg.neighbours);
cfg.neighbours = loadvar(cfg.neighbours);
elseif isstruct(cfg.neighbours) && ~isempty(cfg.neighbours)
ft_notice('using specified neighbours for the channels');
elseif isempty(cfg.neighbours) && ~isfield(cfg, 'neighbourdist')
ft_notice('not using neighbours for the channels');
% make an empty neighbour structure
tmp = struct('label', [], 'neighblabel', []);
cfg.neighbours = tmp([]);
end
% this is a hack to get past the case-statement
cfg.method = 'specified';
end
end
if hasatlas && ~strcmp(cfg.method, 'parcellation')
ft_error('an atlas as input data argument requires cfg.method = ''parcellation''');
elseif strcmp(cfg.method, 'parcellation') && ~hasatlas
ft_error('cfg.method = ''parcellation'' requires an atlas as input data');
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'forbidden', {'channels'}); % prevent accidental typos, see issue 1729
cfg = ft_checkconfig(cfg, 'required', {'method'});
cfg = ft_checkconfig(cfg, 'renamed', {'elecfile', 'elec'});
cfg = ft_checkconfig(cfg, 'renamed', {'gradfile', 'grad'});
cfg = ft_checkconfig(cfg, 'renamed', {'optofile', 'opto'});
cfg = ft_checkconfig(cfg, 'renamedval', {'method', 'tri', 'triangulation'});
% set the defaults
cfg.feedback = ft_getopt(cfg, 'feedback', 'no');
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.compress = ft_getopt(cfg, 'compress', 'yes');
cfg.parcellation = ft_getopt(cfg, 'parcellation', 'parcellation');
if hasdata && ~hasatlas
% check if the input data is valid for this function
data = ft_checkdata(data);
% set the default for senstype depending on the data
if isfield(data, 'grad')
cfg.senstype = ft_getopt(cfg, 'senstype', 'meg');
elseif isfield(data, 'elec')
cfg.senstype = ft_getopt(cfg, 'senstype', 'eeg');
elseif isfield(data, 'opto')
cfg.senstype = ft_getopt(cfg, 'senstype', 'opto');
else
cfg.senstype = ft_getopt(cfg, 'senstype', []);
end
end
if strcmp(cfg.method, 'distance') || strcmp(cfg.method, 'triangulation')
% these methods require channel positions in either 3D or in 2D
if isfield(cfg, 'layout') && ~isempty(cfg.layout)
% get 2D positions from the layout
tmpcfg = keepfields(cfg, {'layout', 'channel', 'rows', 'columns', 'commentpos', ...
'skipcomnt', 'scalepos', 'skipscale', 'projection', 'viewpoint', ...
'rotate', 'width', 'height', 'elec', 'grad', 'opto', 'showcallinfo', 'trackcallinfo', 'trackusage', 'trackdatainfo', 'trackmeminfo', 'tracktimeinfo', 'checksize'});
tmpcfg.skipscale = 'yes';
tmpcfg.skipcomnt = 'yes';
layout = ft_prepare_layout(tmpcfg);
chanpos = layout.pos;
label = layout.label;
else
% get 3D positions from the sensor description
if hasdata
sens = ft_fetch_sens(cfg, data);
else
sens = ft_fetch_sens(cfg);
end
chanpos = sens.chanpos;
label = sens.label;
end
if hasdata
% remove channels that are not in data
[dum, sensidx] = match_str(data.label, label);
chanpos = chanpos(sensidx, :);
label = label(sensidx);
end
% select the desired channels
desired = ft_channelselection(cfg.channel, label);
[sensidx] = match_str(label, desired);
chanpos = chanpos(sensidx, :);
label = label(sensidx);
if strcmp(ft_senstype(label), 'neuromag306')
ft_warning('Please be aware of the different sensor types in neuromag306 system, see http://www.fieldtriptoolbox.org/faq/why_are_there_multiple_neighbour_templates_for_the_neuromag306_system');
end
end % if distance or triangulation
switch cfg.method
case 'specified'
% use the neighbours as specified by the user
neighbours = cfg.neighbours;
case 'template'
fprintf('Trying to load sensor neighbours from a template\n');
% determine from where to load the neighbour template
if ~isfield(cfg, 'template')
% if data has been put in, try to estimate the sensor type
if hasdata
fprintf('Estimating sensor type of data to determine the layout filename\n');
senstype = ft_senstype(data.label);
fprintf('Data is of sensor type ''%s''\n', senstype);
if ~exist([senstype '_neighb.mat'], 'file')
if exist([senstype '.lay'], 'file')
cfg.layout = [senstype '.lay'];
else
fprintf('Name of sensor type does not match name of layout- and template-file\n');
end
else
cfg.template = [senstype '_neighb.mat'];
end
end
end
% if that failed
if ~isfield(cfg, 'template')
% check whether a layout can be used
if ~isfield(cfg, 'layout')
% error if that fails as well
ft_error('You need to define a template or layout or give data as an input argument when ft_prepare_neighbours is called with cfg.method=''template''');
end
fprintf('Using the 2-D layout filename to determine the template filename\n');
cfg.template = [strtok(cfg.layout, '.') '_neighb.mat'];
end
% adjust filename
if ~exist(cfg.template, 'file')
cfg.template = lower(cfg.template);
end
% add necessary extensions
if numel(cfg.template) < 4 || ~isequal(cfg.template(end-3:end), '.mat')
if numel(cfg.template) < 7 || ~isequal(cfg.template(end-6:end), '_neighb')
cfg.template = [cfg.template, '_neighb'];
end
cfg.template = [cfg.template, '.mat'];
end
% check for existence
if ~exist(cfg.template, 'file')
ft_error('Template file could not be found - please check spelling or see http://www.fieldtriptoolbox.org/faq/how_can_i_define_my_own_neighbourhood_template (please consider sharing it with others via the FT mailing list)');
end
load(cfg.template);
fprintf('Successfully loaded neighbour structure from %s\n', cfg.template);
case 'distance'
% use a smart default for the distance
if ~isfield(cfg, 'neighbourdist')
if exist('sens', 'var')
sens = ft_determine_units(sens);
cfg.neighbourdist = 40 * ft_scalingfactor('mm', sens.unit);
elseif exist('layout', 'var')
layout = ft_determine_units(layout);
cfg.neighbourdist = 40 * ft_scalingfactor('mm', layout.unit);
end
fprintf('using a distance threshold of %g\n', cfg.neighbourdist);
end
neighbours = compneighbstructfrompos(chanpos, label, cfg.neighbourdist);
case 'triangulation'
if size(chanpos, 2)==2 || all(chanpos(:,3)==0)
% the sensor positions are already on a 2D plane
prj = chanpos(:,1:2);
else
% project sensor on a 2D plane
prj = elproj(chanpos);
end
% make a 2d delaunay triangulation of the projected points
tri = delaunay(prj(:,1), prj(:,2));
if strcmp(cfg.compress, 'yes')
tri_x = delaunay(prj(:,1)./2, prj(:,2)); % compress in the x-direction
tri_y = delaunay(prj(:,1), prj(:,2)./2); % compress in the y-direction
tri = [tri; tri_x; tri_y];
end
neighbours = compneighbstructfromtri(chanpos, label, tri);
case 'parcellation'
if ~isfield(data, cfg.parcellation)
ft_error('required field %s not present in the input atlas', cfg.parcellation);
end
switch ft_datatype(data)
case 'mesh+label'
tri = data.tri;
% ensure that the vertices are indexed starting from 1
if min(tri(:))==0
tri = tri + 1;
end
% ensure that the vertices are indexed according to 1:number of unique vertices
tri = tri_reindex(tri);
% create the unique edges from the triangulation
edges = [tri(:,[1 2]); tri(:,[1 3]); tri(:,[2 3])];
edges = double(unique(sort([edges; edges(:,[2 1])],2), 'rows'));
% get the parcel values for the edges that 'go across parcels'
boundary = data.(cfg.parcellation)(edges);
boundary = boundary(boundary(:,1)~=boundary(:,2),:);
% unique parcel-crossing edges
uboundary = unique(boundary, 'rows');
%uboundary = unique([boundary; boundary(:,[2 1])], 'rows');
% count
nboundary = zeros(size(uboundary, 1), 1);
for k = 1:numel(nboundary)
nboundary(k) = sum(boundary(:,1)==uboundary(k,1) & boundary(:,2)==uboundary(k,2));
end
nthresh = 2; % at least nthresh edges need to be there, in order to count as a neighbour, e.g.: touching at the corner does not count
uboundary = uboundary(nboundary>nthresh, :);
uboundary = [uboundary; uboundary(:,[2 1])]; % to make the adjacency matrix symmetric
% fill the adjacency matrix
n = size(uboundary,1);
adj = full(sparse(uboundary(:,1),uboundary(:,2),ones(n,1)));
label = data.([cfg.parcellation 'label']);
neighbours = struct([]);
for k = 1:size(adj,1)
neighbours(k).label = label{k};
neighbours(k).neighblabel = label(adj(k,:)>0);
end
case {'volume+label' 'source+label'}
ft_error('not yet implemented');
otherwise
% this shouldn't happen, but throw an error just to be sure
ft_error('the input data should be an atlas with cfg.method = ''parcellation''');
end
otherwise
ft_error('unsupported method ''%s''', cfg.method);
end
% only select those channels that are in the data
if isfield(cfg, 'channel') && ~isempty(cfg.channel)
if hasdata && ~hasatlas
desired = ft_channelselection(cfg.channel, data.label);
else
desired = ft_channelselection(cfg.channel, {neighbours(:).label});
end
elseif hasdata
desired = data.label;
else
desired = {neighbours(:).label};
end
if ~isempty(desired)
complete = struct;
for i = 1:numel(desired)
complete(i).label = desired{i};
sel = find(strcmp({neighbours(:).label}, desired{i}));
if numel(sel)==1
% take the set of neighbours from the definition
complete(i).neighblabel = neighbours(sel).neighblabel;
else
% there are no neighbours defined for this channel
complete(i).neighblabel = {};
end
end
neighbours = complete;
end
for i = 1:length(neighbours)
% convert them into row-arrays for a nicer code representation with PRINTRSTRUCT
neighbours(i).neighblabel = neighbours(i).neighblabel(:)';
end
k = 0;
for i = 1:length(neighbours)
if isempty(neighbours(i).neighblabel)
ft_warning('no neighbours found for %s', neighbours(i).label);
end
k = k + length(neighbours(i).neighblabel);
end
if k==0
ft_warning('No neighbouring channels were specified or found');
else
fprintf('there are on average %.1f neighbours per channel\n', k/length(neighbours));
end
if strcmp(cfg.feedback, 'yes') && ~hasatlas
% give some graphical feedback
tmpcfg = keepfields(cfg, {'layout', 'rows', 'columns', 'commentpos', 'skipcomnt', 'scalepos', 'skipscale', 'projection', 'viewpoint', 'rotate', 'width', 'height', 'elec', 'grad', 'opto', 'showcallinfo', 'trackcallinfo', 'trackusage', 'trackdatainfo', 'trackmeminfo', 'tracktimeinfo', 'checksize'});
tmpcfg.neighbours = neighbours;
if hasdata
tmpcfg.senstype = cfg.senstype;
ft_neighbourplot(tmpcfg, data);
else
ft_neighbourplot(tmpcfg);
end
elseif strcmp(cfg.feedback, 'yes')
ft_notice('no visual feedback about the neighbours is possible with the current input');
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble previous data
ft_postamble provenance neighbours
ft_postamble history neighbours
ft_postamble savevar neighbours
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that compute the neighbourhood geometry from the
% gradiometer/electrode positions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [neighbours] = compneighbstructfrompos(chanpos, label, neighbourdist)
nchan = length(label);
% compute the distance between all sensors
dist = zeros(nchan,nchan);
for i = 1:nchan
dist(i,:) = sqrt(sum((chanpos(1:nchan,:) - repmat(chanpos(i,:), nchan, 1)).^2,2))';
end
% find the neighbouring electrodes based on distance
% later we have to restrict the neighbouring electrodes to those actually selected in the dataset
channeighbstructmat = (dist<neighbourdist);
% electrode istelf is not a neighbour
channeighbstructmat = (channeighbstructmat .* ~eye(nchan));
% convert back to logical
channeighbstructmat = logical(channeighbstructmat);
% construct a struct-array with all neighbours
neighbours=struct;
for i = 1:nchan
neighbours(i).label = label{i};
neighbours(i).neighblabel = label(channeighbstructmat(i,:));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that computes the neighbourhood geometry from the
% triangulation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [neighbours] = compneighbstructfromtri(chanpos, label, tri)
nchan = length(label);
channeighbstructmat = zeros(nchan,nchan);
% mark neighbours according to triangulation
for i=1:size(tri, 1)
channeighbstructmat(tri(i, 1), tri(i, 2)) = 1;
channeighbstructmat(tri(i, 1), tri(i, 3)) = 1;
channeighbstructmat(tri(i, 2), tri(i, 1)) = 1;
channeighbstructmat(tri(i, 3), tri(i, 1)) = 1;
channeighbstructmat(tri(i, 2), tri(i, 3)) = 1;
channeighbstructmat(tri(i, 3), tri(i, 2)) = 1;
end
% construct a structured cell-array with all neighbours
neighbours = struct;
alldist = [];
for i = 1:nchan
neighbours(i).label = label{i};
neighbidx = find(channeighbstructmat(i,:));
neighbours(i).dist = sqrt(sum((repmat(chanpos(i, :), numel(neighbidx), 1) - chanpos(neighbidx, :)).^2, 2));
alldist = [alldist; neighbours(i).dist];
neighbours(i).neighblabel = label(neighbidx);
end
% remove neighbouring channels that are too far away (imporntant e.g. in
% case of missing sensors)
neighbdist = mean(alldist)+3*std(alldist);
for i=1:nchan
idx = neighbours(i).dist > neighbdist;
neighbours(i).dist(idx) = [];
neighbours(i).neighblabel(idx) = [];
end
neighbours = rmfield(neighbours, 'dist');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that ensures a consistent triangulation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [newtri] = tri_reindex(tri)
% this subfunction reindexes tri such that they run from 1:number of unique vertices
newtri = tri;
[srt, indx] = sort(tri(:));
tmp = cumsum(double(diff([0;srt])>0));
newtri(indx) = tmp;