forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_timelockgrandaverage.m
264 lines (231 loc) · 10.2 KB
/
ft_timelockgrandaverage.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
function [grandavg] = ft_timelockgrandaverage(cfg, varargin)
% FT_TIMELOCKGRANDAVERAGE computes ERF/ERP average and variance
% over multiple subjects or over blocks within one subject
%
% Use as
% [grandavg] = ft_timelockgrandaverage(cfg, avg1, avg2, avg3, ...)
%
% where
% avg1..N are the ERF/ERP averages as obtained from FT_TIMELOCKANALYSIS
%
% and cfg is a configuration structure with
% cfg.method = string, 'across' or 'within' (default = 'across'), see below for details
% cfg.parameter = string, which parameter to average (default = 'avg')
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), see FT_CHANNELSELECTION for details
% cfg.latency = [begin end] in seconds or 'all' (default = 'all')
% cfg.keepindividual = string, 'yes' or 'no' (default = 'no')
% cfg.nanmean = string, can be 'yes' or 'no' (default = 'yes')
% cfg.normalizevar = string, 'N' or 'N-1' (default = 'N-1')
%
% If cfg.method = 'across', a plain average is performed, i.e. the requested
% parameter in each input argument is weighted equally in the average. This is useful
% when averaging across subjects. The variance-field will contain the variance across
% the parameter of interest, and the output dof-field will contain the number of
% input arguments.
%
% If cfg.method = 'within', a weighted average is performed, i.e. the requested
% parameter in each input argument is weighted according to the degrees of freedom in
% the dof-field. This is useful when averaging within subjects across blocks, e.g.
% when each block was recorded in a separate file. The variance-field will contain
% the variance across all input observations, and the output dof-field will contain
% the total number of observations.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure. For this particular function, the input should be
% structured as a cell-array.
%
% See also FT_TIMELOCKANALYSIS, FT_TIMELOCKSTATISTICS, FT_TIMELOCKBASELINE
% Copyright (C) 2003-2006, Jens Schwarzbach
% Copyright (C) 2013, Burkhard Maess
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar varargin
ft_preamble provenance varargin
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% return immediately after distributed execution
if ~isempty(ft_getopt(cfg, 'distribute'))
return
end
% check if the input data is valid for this function
for i=1:length(varargin)
if isfield(varargin{i},'trial') && isfield(varargin{i},'avg') % see bug2372 (dieloz)
varargin{i} = rmfield(varargin{i}, 'trial');
varargin{i}.dimord = 'chan_time';
ft_warning('not using the trials, using the single-subject average to compute the grand average');
else
if isfield(varargin{i},'trial') && ~isfield(varargin{i},'avg')
ft_error('input structure %d does not contain an average, use FT_TIMELOCKANALYSIS first', i);
end
end
varargin{i} = ft_checkdata(varargin{i}, 'datatype', 'timelock', 'feedback', 'no');
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'forbidden', {'channels'}); % prevent accidental typos, see issue 1729
% set the defaults
cfg.method = ft_getopt(cfg, 'method' , 'across');
cfg.parameter = ft_getopt(cfg, 'parameter' , 'avg');
cfg.channel = ft_getopt(cfg, 'channel' , 'all');
cfg.latency = ft_getopt(cfg, 'latency' , 'all');
cfg.keepindividual = ft_getopt(cfg, 'keepindividual', 'no');
cfg.nanmean = ft_getopt(cfg, 'nanmean' , 'yes');
cfg.normalizevar = ft_getopt(cfg, 'normalizevar' , 'N-1');
if iscell(cfg.parameter)
if numel(cfg.parameter)>1
ft_error('only a single parameter can be specified to be averaged');
else
cfg.parameter = cfg.parameter{1};
end
end
if strcmp(cfg.parameter, 'trial')
ft_error('not supporting averaging over the repetition dimension, please use FT_TIMELOCKANALYSIS');
end
% select trials and channels of interest
orgcfg = cfg;
tmpcfg = keepfields(cfg, {'parameter', 'channel', 'tolerance', 'latency', 'showcallinfo', 'trackcallinfo', 'trackusage', 'trackdatainfo', 'trackmeminfo', 'tracktimeinfo', 'checksize'});
[varargin{:}] = ft_selectdata(tmpcfg, varargin{:});
% restore the provenance information
[cfg, varargin{:}] = rollback_provenance(cfg, varargin{:});
% do not use the default option returned by FT_SELECTDATA, but the original one for this function
cfg.nanmean = orgcfg.nanmean;
% determine the size of the data to be averaged
datsiz = size(varargin{1}.(cfg.parameter));
dimord = getdimord(varargin{1}, cfg.parameter);
nsubj = length(varargin);
% whether to normalize the variance with N or N-1, see VAR
normalizewithN = strcmpi(cfg.normalizevar, 'N');
% whether nans should persist in the output or be treated as missing values
if istrue(cfg.nanmean)
mymean = @nanmean;
myvar = @nanvar;
mysum = @nansum;
else
mymean = @mean;
myvar = @var;
mysum = @sum;
end
if istrue(cfg.keepindividual)
fprintf('not computing average, but keeping individual %s for %d subjects\n', cfg.parameter, nsubj);
% allocate memory to hold the data and collect it
dat = zeros([nsubj, datsiz]);
for s=1:nsubj
dat(s, :, :, :) = varargin{s}.(cfg.parameter);
end
grandavg.individual = dat; % Nsubj x Nchan x Nsamples
else
dat = nan([nsubj, datsiz]);
dof = nan([nsubj, datsiz]);
switch cfg.method
case 'across'
fprintf('computing average of %s across %d subjects\n', cfg.parameter, nsubj);
for s=1:nsubj
dat(s, :, :, :) = varargin{s}.(cfg.parameter);
end
% compute the mean and variance across subjects
grandavg.avg = reshape(mymean(dat, 1), datsiz);
grandavg.var = reshape(myvar(dat, normalizewithN, 1), datsiz);
grandavg.dof = reshape(sum(isfinite(dat), 1), datsiz);
if normalizewithN
% just to be sure
grandavg.var(grandavg.dof<=0) = NaN;
else
% see https://stats.stackexchange.com/questions/4068/how-should-one-define-the-sample-variance-for-scalar-input
% the fieldtrip/external/stats/nanvar implementation behaves differently here than Mathworks VAR and NANVAR implementations
grandavg.var(grandavg.dof<=1) = NaN;
end
case 'within'
fprintf('computing average of %s within subjects over %d blocks\n', cfg.parameter, nsubj);
for s=1:nsubj
dat(s, :, :, :) = varargin{s}.(cfg.parameter);
dof(s, :, :, :) = varargin{s}.dof;
end % for nsub
% compute the weighted mean across input arguments
grandavg.avg = mysum(dat .* dof, 1) ./ sum(dof, 1);
grandavg.avg = reshape(grandavg.avg, datsiz);
grandavg.dof = sum(dof, 1);
grandavg.dof = reshape(grandavg.dof, datsiz);
% this follows https://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_variance with frequency weights
if normalizewithN
grandavg.var = mysum(dof .* (dat - repmat(reshape(grandavg.avg, [1 datsiz]), [nsubj 1 1])).^2, 1) ./ sum(dof, 1);
grandavg.var = reshape(grandavg.var, datsiz);
else
grandavg.var = mysum(dof .* (dat - repmat(reshape(grandavg.avg, [1 datsiz]), [nsubj 1 1])).^2, 1) ./ (sum(dof, 1) - 1);
grandavg.var = reshape(grandavg.var, datsiz);
end
otherwise
ft_error('unsupported value for cfg.method')
end % switch
end % if keepindividual
% collect the output data
grandavg = copyfields(varargin{1}, grandavg, {'time', 'freq', 'label', 'labelcmb'});
% sensor positions should only be present in the output when they are identical in all inputs
hasgrad = cellfun(@(x) isfield(x, 'grad'), varargin(:));
if all(hasgrad) % check if positions are different between subjects
samegrad = cellfun(@(x) isequal(varargin{1}.grad, x.grad), varargin(2:end));
if all(samegrad)
grandavg.grad = varargin{1}.grad;
else
ft_warning('discarding gradiometer information because it is not identical in all inputs');
end
end
haselec = cellfun(@(x) isfield(x, 'elec'), varargin(:));
if all(haselec) % check if positions are different between subjects
sameelec = cellfun(@(x) isequal(varargin{1}.elec, x.elec), varargin(2:end));
if all(sameelec)
grandavg.elec = varargin{1}.elec;
else
ft_warning('discarding electrode information because it is not identical in all inputs');
end
end
hasopto = cellfun(@(x) isfield(x, 'opto'), varargin(:));
if all(hasopto) % check if positions are different between subjects
sameopto = cellfun(@(x) isequal(varargin{1}.opto, x.opto), varargin(2:end));
if all(sameopto)
grandavg.opto = varargin{1}.opto;
else
ft_warning('discarding optode information because it is not identical in all inputs');
end
end
% set dimord
if strcmp(cfg.keepindividual, 'yes')
grandavg.dimord = ['subj_', dimord];
elseif strcmp(cfg.keepindividual, 'no')
grandavg.dimord = dimord;
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble previous varargin
ft_postamble provenance grandavg
ft_postamble history grandavg
ft_postamble savevar grandavg