-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDTW_vaccine_multi.py
executable file
·103 lines (85 loc) · 4.37 KB
/
DTW_vaccine_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/usr/bin/env python
import os
import sys
import math
from dtaidistance.subsequence.dtw import subsequence_alignment
from dtaidistance import dtw_visualisation as dtwvis
from dtaidistance import dtw
from ont_fast5_api.fast5_interface import get_fast5_file
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
import glob
import click
from itertools import repeat
import numpy as np
from scipy import stats
import pandas as pd
from scipy import signal
from concurrent.futures import ProcessPoolExecutor
import datetime
# major function for finding subsequence matches in raw nanopore signals
def find_sim(ref,fast5_path,verbose=True,cutoff=20000):
# create results data.frame (pandas)
results = pd.DataFrame(columns=['read_id','distance','startidx','endidx'])
with get_fast5_file(fast5_path, mode="r") as f5: # open fast5
now = datetime.datetime.now()
print("##### processing file: " + fast5_path + " " + str(now))
i=0
for read in f5.get_reads(): # iterate thorugh reads
raw_data = read.get_raw_data(scale=True)
raw_data = np.array(raw_data[1:cutoff]).astype(float) # get only first {cutoff} signals
raw_data = signal.savgol_filter(raw_data,51,3) # apply savitzky golay fiter
raw_data = stats.zscore(raw_data) #zscore normalize signals
read_id = read.read_id # get read_id
# perform alignment using sequence_alignment from dtaidistance:
seq_align = subsequence_alignment(ref,raw_data,use_c=True) #use_C - use C capabilities (faster) if compiled and available
match = seq_align.best_match() # get best match from alignment
startidx, endidx = match.segment # get start and end of alignment
i=i+1
if(endidx>startidx+10): # if start and end are not close to each other
distance = dtw.distance_fast(ref, raw_data[startidx:endidx]) # calculate distance using fast option
if(verbose):
print(str(i) + ": " + read_id + "dist: " + str(distance) + " " + str(os.getpid()))
else:
distance=1000
# add results to pandas data.frame
temp_results = pd.DataFrame([(read_id,distance,startidx,endidx)],columns=['read_id','distance','startidx','endidx'])
results = pd.concat([results,temp_results])
#print(raw_data_temp)
# output results of a given chnk to file in /tmp
temp_output = '/tmp/' + os.path.basename(fast5_path) + '_' + str(os.getpid()) + '_DTW.tsv'
results.to_csv(temp_output,sep="\t")
fin_now = datetime.datetime.now()
print("***** finished file: " + fast5_path + " " + str(fin_now) + " (started: " + str(now) + ")")
return results
# get parameters with click:
@click.command()
@click.option('--inpath', '-i', help='The input fast5 directory path')
@click.option('--ref_signal', '-r', help='reference signal')
@click.option('--shift_signal', '-s', default=0, help='shift reference signal by number of points')
@click.option('--output', '-o', help='output file')
@click.option('--threads', '-t', default=1, help='parallel threads to use')
@click.option('--verbose', '-v', is_flag=True, default=False, help='Be verbose?')
def main(inpath,ref_signal,output,shift_signal,threads,verbose):
# load reference signal
ref_sig = np.loadtxt(ref_signal,dtype="float")
ref_sig = ref_sig[1+shift_signal:5000+shift_signal].astype(float) # get only first 5000 signal points
ref_sig = signal.savgol_filter(ref_sig,51,3) # apply savitzky golay fiter
ref_sig = stats.zscore(ref_sig) #zscore normalize signals
print("Succesfully read reference signal")
if(shift_signal>0):
print("Reference signal was shifted by " + str(shift_signal) + " data points")
fin_results = pd.DataFrame(columns=['read_id','distance','startidx','endidx']) # create pandas data.rame for results
futures = [] # initialize futures
# get fast5 files from input path
files = []
for fileNM in glob.glob(inpath + '/**/*.fast5',recursive=True):
#print(fileNM)
files.append(fileNM)
# start processes pool (futures)
with ProcessPoolExecutor(max_workers=threads) as pool:
results = list(pool.map(find_sim, repeat(ref_sig), files, repeat(verbose)))
# produce and save final results
fin_results = pd.concat(results)
fin_results.to_csv(output,sep="\t")
if __name__ == '__main__':
main()