-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathP3.py
180 lines (147 loc) · 5.19 KB
/
P3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as np
def ComputeDistMatrix(dict_alignedSequences):
"""
Useing a given dict with keys containing aligned sequences numbers
(integers) and values which are aligned DNA-sequences (strings) to
compute a distance matrix as a list of lists of floats
Parameters
----------
dict_alignedSequences : dict{(int1,int2): (aSeq1, aSeq2)}
Returns
-------
dist_Matrix: list of lists of floats.
"""
# check if dictionary with keys as tuples containing integers and values as tuples containing strings
check = True
#1 Check Input is dict
if isinstance(dict_alignedSequences, dict) == False:
check = False
#2 Check are the keys and values tuples. Do the keys only contain integers and the vlaues only strings
i = 0
while len(dict_alignedSequences) > i:
#checking for keys and values as tuples
if isinstance(list(dict_alignedSequences.keys())[i], tuple) == False or isinstance(list(dict_alignedSequences.values())[i], tuple) == False:
check = False
break
#checking keys for integers
if isinstance(list(dict_alignedSequences.keys())[i][0], int) == False or isinstance(list(dict_alignedSequences.keys())[i][1], int) == False:
check = False
break
#checking values for strings
if isinstance(list(dict_alignedSequences.values())[i][0], str) == False or isinstance(list(dict_alignedSequences.values())[i][1], str) == False:
check = False
break
#increment the counter for while loop
i += 1
#3 Check sequences contain aligned DNA and are of equal length
for key in dict_alignedSequences:
if is_aligned_dna(dict_alignedSequences[key][0]) == False or is_aligned_dna(dict_alignedSequences[key][1]) == False:
check = False
break
if len(dict_alignedSequences[key][0]) != len(dict_alignedSequences[key][1]):
check = False
break
#final evalauation if data is usable
if check == False:
raise TypeError ('malformed input')
#get number of sequences
matrixdim = howmany_sequences(dict_alignedSequences)
#initialize dist matrix
distMatrix = init_Dist_Matrix(matrixdim)
for i in dict_alignedSequences.keys():
# useing the key i to get the corisponding aligned sequences
seq = dict_alignedSequences[i]
#calculate distances between the sequences
distance = calculate_distance(seq[0],seq[1])
#markdown result at the corrsiponding place in the distmatrix
distMatrix[i[0]][i[1]] = distance
distMatrix[i[1]][i[0]] = distance
return(distMatrix)
def howmany_sequences(listOfTuples):
"""
Determines the amount of DNA sequences which where aligned
Parameters
----------
listOfTuples : A list of Tuples
list of tuples .
Returns
-------
k: integer
Number of compared Sequences
"""
#initialize number of pairs as 0
pairs = 0
#count pairs
for n in listOfTuples:
pairs += 1
k = 1
#find number of initial sequences
while k*(k-1) != pairs*2:
k += 1
return(k)
def init_Dist_Matrix(length):
"""
Initialies a distance matrix containing nothing but 0.0
Parameters
----------
length : integer
Returns
-------
list of lists of 0.0.
"""
dist_matrix = []
while len(dist_matrix) < length:
dist_matrix.append([])
while len(dist_matrix[-1]) < length:
dist_matrix[-1].append(float(0))
# print_matrix(dist_matrix) #just for the visuals can be removed later
return(dist_matrix)
def calculate_distance(seq1,seq2):
"""
Calculates the distance between two sequences
Parameters
----------
seq1 : string
aligend DNA-sequence 1.
seq2 : string
aligend DNA-sequence 2.
Returns
-------
pcorr: float
Calculated distance value.
"""
mmcounter = 0 #mismatchcount
seqlen = 0 #sequence length
#cout the sequence length and mismatches
for i in range(len(seq1)):
if seq1[i]!='-' and seq2[i]!='-':
seqlen += 1
if seq1[i] != seq2[i]:
mmcounter += 1
#compute p
p = (mmcounter/seqlen)
#adjust p
if p >= 0.75:
pcorr = float(30)
else:
pcorr = (-3/4)*np.log(1-((4/3)*p))
return(pcorr)
def is_aligned_dna(sequence):
"""
Checks if the length of a string is 0 when all DNA bases and '-' are removed.
Parameters
----------
sequence : string of DNA
Returns
-------
bool
True if len(seq) == 0
otherwise False
"""
#ensure that the given sequence is uppercase
sequence = sequence.upper()
#replace all A C G and T and compare length with 0
if len(sequence.replace("A", "").replace("C", "").replace("G","").replace("T","").replace("-","")) == 0:
return True
else:
return False