-
Notifications
You must be signed in to change notification settings - Fork 1
/
runRNN.py
263 lines (223 loc) · 10.1 KB
/
runRNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#! /user/bin/evn python
# -*- coding:utf8 -*-
"""
@Author : Lau James
@Contact : LauJames2017@whu.edu.cn
@Project : Structure_Func_Recognition
@File : runRNN.py
@Time : 2018/1/23 15:39
@Software : PyCharm
@Copyright: "Copyright (c) 2017 Lau James. All Rights Reserved"
"""
import os
import sys
import time
import datetime
import numpy as np
import tensorflow as tf
import csv
from sklearn import metrics
from model.RNNmodel import TextRnnNew
from data import dataHelper
# Data loading params
tf.flags.DEFINE_float("dev_sample_percentage", 0.1, "Percentage of the training data to use for validation")
tf.flags.DEFINE_string("train_data_file", "./data/paragraph3500",
"Data source for the train data.")
tf.flags.DEFINE_string("test_data_file", "./data/paragraph500",
"Data source for the test data.")
tf.flags.DEFINE_string("tensorboard_dir", "tensorboard_dir/textRNN_para", "saving path of tensorboard")
tf.flags.DEFINE_string("save_dir", "checkpoints/textRNN_para", "save base dir")
# Model Hyperparameters
tf.flags.DEFINE_integer("embedding_dim", 256, "Dimensionality of character embedding (default: 128)")
tf.flags.DEFINE_integer("seq_length", 600, "sequence length (default: 600)")
tf.flags.DEFINE_integer("vocab_size", 119368, "vocabulary size (default: 5000)")
tf.flags.DEFINE_integer("num_classes", 5, "Number of classes (default: 5)")
tf.flags.DEFINE_float("dropout_keep_prob", 0.8, "Dropout keep probability (default: 0.5)")
tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularization lambda (default: 0.0)")
tf.flags.DEFINE_integer("num_layers", 2, "number of layers (default: 2)")
tf.flags.DEFINE_integer("hidden_dim", 128, "neural numbers of hidden layer (default: 128)")
tf.flags.DEFINE_string("rnn_type", 'LSTM', "rnn type (default: gru)")
tf.flags.DEFINE_float("learning_rate", 1e-3, "learning rate (default:1e-3)")
# Training parameters
tf.flags.DEFINE_integer("batch_size", 16, "Batch Size (default: 64)")
tf.flags.DEFINE_integer("num_epochs", 200, "Number of training epochs (default: 200)")
tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)")
tf.flags.DEFINE_integer("checkpoint_every", 500, "Save model after this many steps (default: 100)")
tf.flags.DEFINE_integer("num_checkpoints", 5, "Number of checkpoints to store (default: 5)")
# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
FLAGS = tf.flags.FLAGS
# FLAGS._parse_flags()
FLAGS.flag_values_dict()
save_path = os.path.join(FLAGS.save_dir, 'best_validation')
def get_time_dif(start_time):
"""获取已使用时间"""
end_time = time.time()
time_dif = end_time - start_time
return datetime.timedelta(seconds=int(round(time_dif)))
def feed_data(x_batch, y_batch, keep_prob):
feed_dict = {
model.input_x: x_batch,
model.input_y: y_batch,
model.dropout_keep_prob: keep_prob
}
return feed_dict
def evaluate(x_dev, y_dev, sess):
"""
Evaluates model on a dev set
:param x_dev:
:param y_dev:
:return:
"""
data_len = len(x_dev)
batch_eval = dataHelper.batch_iter_eval(x_dev, y_dev)
total_loss = 0.0
total_acc = 0.0
for x_batch_eval, y_batch_eval in batch_eval:
batch_len = len(x_batch_eval)
feed_dict = {
model.input_x: x_batch_eval,
model.input_y: y_batch_eval,
model.dropout_keep_prob: 1.0
}
loss, accuracy = sess.run(
[model.loss, model.accuracy],
feed_dict)
total_loss += loss * batch_len
total_acc += accuracy * batch_len
# time_str = datetime.datetime.now().isoformat()
# print("{}: loss {:g}, acc {:g}".format(time_str, total_loss / data_len, total_acc / data_len))
return total_loss / data_len, total_acc / data_len
def train():
print("Configuring TensorBoard and Saver ...")
tensorboard_dir = FLAGS.tensorboard_dir
if not os.path.exists(tensorboard_dir):
os.makedirs(tensorboard_dir)
tf.summary.scalar("loss", model.loss)
tf.summary.scalar("accuracy", model.accuracy)
merged_summary = tf.summary.merge_all()
writer = tf.summary.FileWriter(tensorboard_dir)
# Configuring Saver
saver = tf.train.Saver()
if not os.path.exists(FLAGS.save_dir):
os.makedirs(FLAGS.save_dir)
# Load data
print("Loading data...")
start_time = time.time()
x_train, y_train, x_dev, y_dev = dataHelper.load_data(FLAGS.train_data_file, FLAGS.dev_sample_percentage, FLAGS.save_dir, FLAGS.seq_length)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
# Create Session
session = tf.Session()
session.run(tf.global_variables_initializer())
writer.add_graph(session.graph)
print('Training and deviation ...')
start_time = time.time()
total_batch = 0 # 总批次
best_acc_dev = 0.0 # 最佳验证集准确率
last_improved = 0 # 记录上一次提升批次
require_imporvement = 30000 # 如果超过1000论未提升,提前结束训练
tag = False
for epoch in range(FLAGS.num_epochs):
print('Epoch:', epoch + 1)
batch_train = dataHelper.batch_iter_per_epoch(x_train, y_train, FLAGS.batch_size)
for x_batch, y_batch in batch_train:
feed_dict = feed_data(x_batch, y_batch, FLAGS.dropout_keep_prob)
if total_batch % FLAGS.checkpoint_every == 0:
# write to tensorboard scalar
summary = session.run(merged_summary, feed_dict=feed_dict)
writer.add_summary(summary, total_batch)
if total_batch % FLAGS.evaluate_every == 0:
# print performance on train set and dev set
feed_dict[model.dropout_keep_prob] = 1.0
loss_train, acc_train = session.run([model.loss, model.accuracy], feed_dict=feed_dict)
loss_dev, acc_dev = evaluate(x_dev, y_dev, session)
if acc_dev > best_acc_dev:
# save best result
best_acc_dev = acc_dev
last_improved = total_batch
saver.save(sess=session, save_path=save_path)
improved_str = '*'
else:
improved_str = ''
time_dif = get_time_dif(start_time)
print('Iter: {0:>6}, Train Loss: {1:>6.2}, Train Acc: {2:>7.2%}, Val Loss: {3:>6.2}, ''Val Acc: '
'{4:>7.2%}, Time: {5} {6}'
.format(total_batch, loss_train, acc_train, loss_dev, acc_dev, time_dif, improved_str))
session.run(model.optim, feed_dict=feed_dict) # 运行优化
total_batch += 1
if total_batch - last_improved > require_imporvement:
# having no improvement for a long time
print("No optimization for a long time, auto-stopping...")
tag = True
break
if tag: # early stopping
break
def test():
print("Loading test data ...")
start_time = time.time()
x_raw, y_test = dataHelper.get_para_label(FLAGS.test_data_file)
# y_test = np.argmax(y_test, axis=1)
vocab_path = os.path.join(FLAGS.save_dir, "vocab")
vocab_processor = tf.contrib.learn.preprocessing.VocabularyProcessor.restore(vocab_path)
x_test = np.array(list(vocab_processor.transform(x_raw)))
session = tf.Session()
session.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(session, save_path=save_path)
print('Testing ...')
loss_test, acc_test = evaluate(x_test, y_test, session)
print('Test loss: {0:>6.2}, Test acc: {1:>7.2%}'.format(loss_test, acc_test))
x_test_batches = dataHelper.batch_iter(list(x_test), FLAGS.batch_size, 1, shuffle=False)
all_predictions = []
all_predict_prob = []
count = 0 # concatenate第一次不能为空,需要加个判断来赋all_predict_prob值
for x_test_batch in x_test_batches:
batch_predictions, batch_predict_prob = session.run([model.y_pred, model.prob],
feed_dict={
model.input_x: x_test_batch,
model.dropout_keep_prob: 1.0
})
all_predictions = np.concatenate([all_predictions, batch_predictions])
if count == 0:
all_predict_prob = batch_predict_prob
else:
all_predict_prob = np.concatenate([all_predict_prob, batch_predict_prob])
count = 1
# Evaluation indexes
y_test = np.argmax(y_test, axis=1)
print("Precision, Recall, F1-Score ...")
print(metrics.classification_report(y_test, all_predictions, target_names=['Introduction', 'Relaterd work',
'Methods', 'Experiment', 'Conclusion']))
# Confusion Matrix
print("Confusion Matrix ...")
print(metrics.confusion_matrix(y_test, all_predictions))
# write probability to csv
out_dir = os.path.join(FLAGS.save_dir, 'predict_prob.csv')
print("Saving evaluation to {0}".format(out_dir))
with open(out_dir, 'w') as f:
csv.writer(f).writerows(all_predict_prob)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
if __name__ == '__main__':
if len(sys.argv) != 2 or sys.argv[1] not in ['train', 'test']:
raise ValueError("Please input: python3 runRNN.py [train/test]")
print("\nParameters:")
for key in sorted(FLAGS.__flags.keys()):
print("{}={}".format(key.upper(), FLAGS.__flags[key].value))
print("")
model = TextRnnNew(
sequence_length=FLAGS.seq_length,
num_classes=FLAGS.num_classes,
vocab_size=FLAGS.vocab_size,
embedding_dim=FLAGS.embedding_dim,
num_layers=FLAGS.num_layers,
hidden_dim=FLAGS.hidden_dim,
rnn=FLAGS.rnn_type,
learning_rate=FLAGS.learning_rate
)
if sys.argv[1] == 'train':
train()
else:
test()