@@ -80,20 +80,20 @@ func main() {
80
80
81
81
/* Define variables for reading evaluation graphs' (both GAN and Discriminator in training mode) output */
82
82
// GAN Generator output
83
- var generated_samples gorgonia.Value
84
- gorgonia .Read (definedGAN .GeneratorOut (), & generated_samples )
83
+ var generatedSamples gorgonia.Value
84
+ gorgonia .Read (definedGAN .GeneratorOut (), & generatedSamples )
85
85
86
86
// GAN overall output (Discriminator output actually)
87
- var output_discriminator gorgonia.Value
88
- gorgonia .Read (definedGAN .Out (), & output_discriminator )
87
+ var outputDiscriminator gorgonia.Value
88
+ gorgonia .Read (definedGAN .Out (), & outputDiscriminator )
89
89
90
90
// Discriminator output in training mode
91
- var output_discriminator_train gorgonia.Value
92
- gorgonia .Read (discriminatorTrain .Out (), & output_discriminator_train )
91
+ var outputDiscriminatorTrain gorgonia.Value
92
+ gorgonia .Read (discriminatorTrain .Out (), & outputDiscriminatorTrain )
93
93
94
94
// Initialize machine for GAN evaluation graph
95
- tmFFonly := gorgonia .NewTapeMachine (ganGraph )
96
- defer tmFFonly .Close ()
95
+ tmGenerator := gorgonia .NewTapeMachine (ganGraph )
96
+ defer tmGenerator .Close ()
97
97
98
98
// Define loss function for GAN as
99
99
// loss{i} = (gan_out{i} - target{i})^2
@@ -198,25 +198,25 @@ func main() {
198
198
}
199
199
200
200
real_samples_labels := tensor .Ones (tensor .Float64 , batchSize , 1 )
201
- latent_space_samples := gan .NormRandDense (batchSize , 2 )
202
- err = gorgonia .Let (inputGenerator , latent_space_samples )
201
+ latentSpaceSamples := gan .NormRandDense (batchSize , 2 )
202
+ err = gorgonia .Let (inputGenerator , latentSpaceSamples )
203
203
if err != nil {
204
204
panic (err )
205
205
}
206
206
207
- // Do step on evaluation graph for obtaining 'generated_samples ' (Generator output)
208
- err = tmFFonly .RunAll ()
207
+ // Do step on evaluation graph for obtaining 'generatedSamples ' (Generator output)
208
+ err = tmGenerator .RunAll ()
209
209
if err != nil {
210
210
panic (err )
211
211
}
212
- tmFFonly .Reset ()
212
+ tmGenerator .Reset ()
213
213
214
214
// Assume that Generator generates wrong data, and label its output as zero
215
215
generated_samples_labels := tensor .Ones (tensor .Float64 , batchSize , 1 )
216
216
generated_samples_labels .Zero ()
217
217
218
218
// Concat real and fake input data
219
- all_samples , err := tensor .Concat (0 , xVal , generated_samples .(tensor.Tensor ))
219
+ all_samples , err := tensor .Concat (0 , xVal , generatedSamples .(tensor.Tensor ))
220
220
if err != nil {
221
221
panic (err )
222
222
}
@@ -246,8 +246,8 @@ func main() {
246
246
}
247
247
tmDisTrain .Reset ()
248
248
249
- latent_space_samples_gen := gan .NormRandDense (batchSize , 2 )
250
- err = gorgonia .Let (inputGenerator , latent_space_samples_gen )
249
+ latentSpaceSamplesGenerated := gan .NormRandDense (batchSize , 2 )
250
+ err = gorgonia .Let (inputGenerator , latentSpaceSamplesGenerated )
251
251
if err != nil {
252
252
panic (err )
253
253
}
@@ -272,7 +272,7 @@ func main() {
272
272
fmt .Printf ("\t Generator's loss: %v\n " , costValGAN )
273
273
fmt .Printf ("\t Taken time: %v\n " , time .Since (st ))
274
274
275
- testSamplesTensor , err := gan .GenerateTestSamples (tmFFonly , tmDisTrain , inputGenerator , inputDiscriminatorTrain , generated_samples , numTestSamples , batchSize , 2 )
275
+ testSamplesTensor , err := gan .GenerateTestSamples (tmGenerator , tmDisTrain , inputGenerator , inputDiscriminatorTrain , generatedSamples , numTestSamples , batchSize , 2 )
276
276
if err != nil {
277
277
panic (err )
278
278
}
@@ -296,7 +296,7 @@ func main() {
296
296
297
297
// Final test of Generator
298
298
fmt .Println ("Start testing generator after final epoch" )
299
- testSamplesTensor , err := gan .GenerateTestSamples (tmFFonly , tmDisTrain , inputGenerator , inputDiscriminatorTrain , generated_samples , numTestSamples , batchSize , 2 )
299
+ testSamplesTensor , err := gan .GenerateTestSamples (tmGenerator , tmDisTrain , inputGenerator , inputDiscriminatorTrain , generatedSamples , numTestSamples , batchSize , 2 )
300
300
if err != nil {
301
301
panic (err )
302
302
}
0 commit comments