-
Notifications
You must be signed in to change notification settings - Fork 5
/
easycalib_demo.py
719 lines (614 loc) · 25.3 KB
/
easycalib_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
import os
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
import json
from enum import Enum
import numpy as np
import os
import torch
import argparse
import numpy as np
from multiprocessing import Pool
torch.multiprocessing.set_start_method('spawn', force=True)
from easycalib.utils.utilities import overlay_mask_on_img, compute_forward_kinematics, render_mask, suppress_stdout, nostdout, time_block, namespace_to_dict, is_jsonable
import imageio
import subprocess
import numpy as np
import os.path as osp
from glob import glob
import cv2
import functools
from easycalib.utils.utilities import (
merge_two_dicts,
namespace_to_dict,
time_block
)
from easycalib.utils.setup_logger import setup_logger
from easycalib.lib.easycalib_analysis import caliberate_camera, CALIBERATION_METHODS
from easycalib.utils.point_drawer import PointDrawer
from easycalib.config.parse_demo_argument import parse_easycalib_default_args
from easycalib.utils.utilities import run_grounded_sam
import pickle
import matplotlib as mpl
mpl.use("tkagg")
import matplotlib.pyplot as plt
from tqdm import tqdm
logger = setup_logger(__name__)
COTRACKER_INSTALLED=True
try:
from easycalib.utils.co_tracker_predictor_wrapper import CoTrackerPredictorWrapper
except ImportError:
COTRACKER_INSTALLED = False
logger.warning("CoTracker is not installed, running w/o cotracker support.")
SPATIAL_TRACKER_INSTALLED=True
try:
from easycalib.utils.spatial_tracker_predictor_wrapper import parse_spatracker_args, spatracker_predict
except ImportError:
SPATIAL_TRACKER_INSTALLED = False
logger.warning("Spatial tracker is not installed, running w/o spatial_tracker support.")
KEYPOINT_TRACKING_METHODS = Enum("methods", ["COTRACKER", "SPATIAL_TRACKER", "DINO_TRACKER"])
KEYPOINT_TRACKING_DICT = {"cotracker": KEYPOINT_TRACKING_METHODS.COTRACKER, "spatial_tracker": KEYPOINT_TRACKING_METHODS.SPATIAL_TRACKER, "dino_tracker": KEYPOINT_TRACKING_METHODS.DINO_TRACKER}
SAVE_TAG = "Kalib"
class Kalib:
def __init__(self, args):
override_args = {"namespace": namespace_to_dict(args)}
parsed_args = self.parse_argument(override_args)
self._args = parsed_args
self.root_dir = self._args.root_dir
self.saved_name = None
self.override_args = None
self.model_inference_path = None
self.video: torch.Tensor
self.found_image_paths = None
self.found_json_paths = None
self.img_objs = None
self.json_objs = None
self.end_effector_position = None
self.first_frame_segm_mask = None
self.first_frame = None
self.cuda_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.Tc_c2b = None
# region
@ staticmethod
def _post_process_and_render_mask(index, img_path, args, H, W, local_to_world_matrices, camera_intrinsics, qposes, pred_trans, gt_mask_save_dir, pred_img_save_dir, overlaid_img_save_dir):
# ! This function should only be used inside Kalib, as multiprocessing requires pickable objects, so this function cannot be a local function (e.g, a class func for Kalib class.)
"""
use nvdiffrast renderer to render gt_mask, pred_mask and overlay gt mask and pred_mask on original rgb image.
"""
with nostdout():
gt_mask = render_mask(args.urdf_path, args.mesh_paths, local_to_world_matrices[index], np.array(camera_intrinsics[index]), H, W, qposes[index])
gt_mask_save_path = osp.join(gt_mask_save_dir, "%s.png" % osp.splitext(osp.basename(img_path))[0])
pred_mask_save_path = osp.join(pred_img_save_dir, "%s.png" % osp.splitext(osp.basename(img_path))[0])
pred_mask = render_mask(args.urdf_path, args.mesh_paths, np.array(pred_trans), np.array(camera_intrinsics[index]), H, W, qposes[index])
cv2.imwrite(gt_mask_save_path, (gt_mask * 255).astype(np.uint8))
cv2.imwrite(pred_mask_save_path, (pred_mask * 255).astype(np.uint8))
overlay_img = overlay_mask_on_img(
cv2.imread(img_path),
gt_mask,
pred_mask,
rgb1=(255, 0, 255),
rgb2=(0, 255, 255),
alpha=0.5,
show=False,
save_to_disk=True,
img_save_path=osp.join(overlaid_img_save_dir, "%0.4d.png" % index),
)
# endregion
# region
@ staticmethod
def _render_all_masks(found_image_paths, found_json_paths, img_objs, json_objs, pred_local_to_world_matrix, args, save_tag):
"""
TODO: Determine whether the nvdiffrast renderere takes local_to_world_matrix/world_to_local_matrix as input.
"""
qposes = [
single_json_obj["objects"][0]["joint_positions"]
for single_json_obj in json_objs
]
camera_intrinsics = [
single_json_obj["objects"][0]["camera_intrinsics"]
for single_json_obj in json_objs
]
local_to_world_matrices = [
single_json_obj["objects"][0]["local_to_world_matrix"] if args.has_gt else pred_local_to_world_matrix
for single_json_obj in json_objs
]
H, W = cv2.imread(found_image_paths[0]).shape[:2]
# device = torch.device("cuda:%d" % args.renderer_device_id) if torch.cuda.is_available() else "cpu"
overlaid_img_save_dir = osp.join(osp.dirname(found_image_paths[0]), save_tag, "%s_rendered_mask" % save_tag)
os.makedirs(overlaid_img_save_dir, exist_ok=True)
pred_img_save_dir = osp.join(osp.dirname(found_image_paths[0]), save_tag, "%s_pred_mask" % save_tag)
os.makedirs(pred_img_save_dir, exist_ok=True)
gt_mask_save_dir = osp.join(osp.dirname(found_image_paths[0]), save_tag, "%s_gt_mask" % save_tag)
os.makedirs(gt_mask_save_dir, exist_ok=True)
tasks = [(i, path, args, H, W, local_to_world_matrices, camera_intrinsics, qposes, pred_local_to_world_matrix, gt_mask_save_dir, pred_img_save_dir, overlaid_img_save_dir)
for i, path in enumerate(found_image_paths)]
logger.debug(f"Use multiprocessing.Pool to parallel mask rendering routine.")
cuda_visible_devices = os.environ["CUDA_VISIBLE_DEVICES"] if "CUDA_VISIBLE_DEVICES" in os.environ else None
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.renderer_device_id)
with time_block("Finish mask rendering routine. ", logger):
with Pool(processes=25) as pool:
pool.starmap(Kalib._post_process_and_render_mask, tasks)
if cuda_visible_devices is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = cuda_visible_devices
else:
del os.environ["CUDA_VISIBLE_DEVICES"]
os_env = os.environ.copy()
ffmpeg_comma = f"ffmpeg -framerate 10 -pattern_type glob -y -i '{osp.join(gt_mask_save_dir,'*.png')}' -c:v libx264 -pix_fmt yuv420p {osp.join(gt_mask_save_dir, 'outputs.mp4')}"
process = subprocess.run(
ffmpeg_comma,
shell=True,
env=os_env,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
)
ffmpeg_comma = f"ffmpeg -framerate 10 -pattern_type glob -y -i '{osp.join(pred_img_save_dir,'*.png')}' -c:v libx264 -pix_fmt yuv420p {osp.join(pred_img_save_dir, 'outputs.mp4')}"
process = subprocess.run(
ffmpeg_comma,
shell=True,
env=os_env,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
)
# endregion
# region
def parse_argument(self, namespace: dict):
# logger.info(f"Receiving override argparse.Namespace object: {namespace}")
default_args = namespace_to_dict(parse_easycalib_default_args(cli_input=False))
override_args = namespace["namespace"]
merged_args = merge_two_dicts(default_args, override_args)
merged_args = argparse.Namespace(**merged_args)
return merged_args
# endregion
def post_process(self):
args = self._args
# render the pred mask on the inference result from EasyHeC.
if self.found_image_paths is None or self.found_json_paths is None or self.img_objs is None or self.json_objs is None:
self.img_objs, self.json_objs, self.found_image_paths, self.found_json_paths = Kalib.find_data_in_dir(
self.root_dir, args.cut_off
)
with open(self.pnp_res_save_path, "rb") as f:
"""
save_obj = {
"avg_trans_err": average_trans_err.tolist(),
"avg_rot_err": average_rot_err.item(),
"avg_reprojection_err": average_reprojection_err.item(),
"pnp_transform_predicted_mats": pnp_transform_predicted_mats.tolist(),
"gt_local_to_world_matrix": gt_local_to_world_matrix.tolist(),
}
"""
pnp_inference_res_save_obj = pickle.load(f)
avg_trans_err = pnp_inference_res_save_obj["avg_trans_err"]
avg_rot_err = pnp_inference_res_save_obj["avg_rot_err"]
avg_reproj_err = pnp_inference_res_save_obj["avg_reprojection_err"]
pnp_trans_predicted_mats = pnp_inference_res_save_obj[
"pnp_transform_predicted_mats"
]
# gt_local_to_world_matrix = pnp_inference_res_save_obj[
# "gt_local_to_world_matrix"
# ]
# camera_K = pnp_inference_res_save_obj["camera_K"]
# camera_K = np.array(camera_K)
# gt_local_to_world_matrix = np.array(gt_local_to_world_matrix)
pnp_trans_predicted_mats = np.array(pnp_trans_predicted_mats)
if args.render_mask:
pred_world_to_local_matrix = (
pnp_trans_predicted_mats[0]
if len(pnp_trans_predicted_mats) > 1
else pnp_trans_predicted_mats
)
logger.info(
f"Avg_trans_err: {avg_trans_err}, Avg_rot_err: {avg_rot_err}, Avg_reproj_err: {avg_reproj_err}, root_dir: {self.root_dir}."
)
Kalib._render_all_masks(self.found_image_paths, self.found_json_paths, self.img_objs, self.json_objs, pred_world_to_local_matrix, args, SAVE_TAG)
# region
# region
@ functools.lru_cache(maxsize=None)
@ staticmethod
def find_data_in_dir(dir_path, cut_off):
image_suffixes = ["rgb.jpg", "jpg", "png"]
suffix_hits = {suffix: 0 for suffix in image_suffixes}
for suffix in image_suffixes:
matches = glob(osp.join(dir_path, f"*.{suffix}"))
suffix_hits[suffix] = len(matches)
sorted_suffixes = sorted(suffix_hits.items(), key=lambda x: x[1], reverse=True)
main_suffix = sorted_suffixes[0][0]
found_image_paths = sorted(
glob(osp.join(dir_path, f"*.{main_suffix}"))
)
found_json_paths = sorted(glob(osp.join(dir_path, "*.json")))
if cut_off != -1:
found_image_paths = found_image_paths[: cut_off]
found_json_paths = found_json_paths[: cut_off]
img_insts = []
json_objs = []
for img_path, json_path in tqdm(zip(found_image_paths, found_json_paths), desc="Reading image paths and json paths."):
img_inst = cv2.imread(img_path)
if img_inst.shape[-1] == 4:
img_inst = img_inst[:, :, :3]
img_insts.append(img_inst.astype(np.uint8))
with open(json_path, "r") as j:
json_obj = json.loads(j.read())
json_objs.append(json_obj)
return img_insts, json_objs, found_image_paths, found_json_paths
# endregion
def mask_end_effector_position(self, first_frame_path):
# run PointDrawer to obtain the end_effector_position
args = self._args
tracking_kpts = np.array(args.keypoint_friendly_names)[np.array(args.keypoint_ids)]
rgb = imageio.imread_v2(first_frame_path)
pointdrawer = PointDrawer(
sam_checkpoint=args.sam_checkpoint_path,
sam_model_type=args.sam_type,
window_name="End Effector Position Annotation",
dry_run=True,
)
rgb = rgb[..., :3]
eef_pos, labels, mask = pointdrawer.run(rgb)
if eef_pos.shape[0] != len(args.keypoint_ids):
raise Exception("The number of keypoints annotated is not equal to the number of keypoints in the config file.")
# self.end_effector_position = np.mean(eef_pos, axis=0).tolist() # N x 2
self.end_effector_position = eef_pos.tolist()
return self.end_effector_position
def preprocess(self, save_tag):
"""
Skip the main routine if the pnp_inference_res.pkl is founded in the correct path.
"""
self.pnp_res_save_path = osp.join(
self.root_dir,
save_tag,
"%s_outputs" % save_tag,
"pnp_inference_res.pkl",
)
args = self._args
if not osp.exists(self.pnp_res_save_path):
img_objs, json_objs, found_image_paths, found_json_paths = Kalib.find_data_in_dir(
self.root_dir, args.cut_off
)
first_frame_path = found_image_paths[0]
self.found_image_paths = found_image_paths
self.found_json_paths = found_json_paths
self.img_objs = img_objs
self.json_objs = json_objs
if len(found_image_paths) == 0 or len(found_json_paths) == 0:
raise Exception("Couldn't found any images or json files in %s" % self.root_dir)
if len(found_image_paths) != len(found_json_paths):
raise Exception("The number of image paths and json files doesn't match! Directory: %s" % self.root_dir)
logger.debug("First frame path: %s" % first_frame_path)
# cv2.imshow("first_frame", imageio.imread_v2(first_frame_path))
# cv2.waitKey(0)
# key = cv2.waitKey(0)
# if key == ord("n"):
# return
# else:
# cv2.destroyAllWindows()
self.end_effector_position = self.mask_end_effector_position(first_frame_path)
with time_block("Processing payload data from local disk ", logger):
img_objs, json_objs, found_image_paths, found_json_paths = Kalib.find_data_in_dir(
self.root_dir, args.cut_off
)
first_frame_path = found_image_paths[0]
self.len_frame = len(found_image_paths)
self.found_image_paths = found_image_paths
self.found_json_paths = found_json_paths
assert (
len(found_image_paths) > 0
and len(found_json_paths) > 0
and len(found_image_paths) == len(found_json_paths)
), "Error: No image or json files found in the directory, or the number of images and json files are not equal."
video_frames = np.stack(img_objs)
video = (
torch.from_numpy(video_frames).permute(0, 3, 1, 2)[None].float()
) # batch x times x channel x height x width
self.model_inference_path = osp.join(
self.root_dir,
SAVE_TAG,
"saved_frames_visibility",
)
self.first_frame = cv2.imread(first_frame_path).astype(np.uint8)
if args.use_segm_mask:
mask_save_dir = osp.join(self.root_dir, SAVE_TAG, "first_frame_mask_segm")
os.makedirs(mask_save_dir, exist_ok=True)
self.mask_save_path = osp.join(mask_save_dir, "mask.png")
if args.use_grounded_sam:
first_frame_segm_mask = self.run_grounded_sam(
frame_save_path=first_frame_path,
mask_save_path=self.mask_save_path,
device_id=args.mask_inference_device_id,
)
if first_frame_segm_mask is None:
logger.warning("Grounded_SAM inference failed to find valid mask for this frame. Input prompt: Robot arm.")
elif args.use_sam:
pointdrawer = PointDrawer(
sam_checkpoint=args.sam_checkpoint_path,
sam_model_type=args.sam_type,
window_name="First Frame Mask segmentation",
device=torch.device("cuda:%d" % args.mask_inference_device_id if torch.cuda.is_available() else torch.device("cpu"))
)
_, _, mask = pointdrawer.run(cv2.imread(first_frame_path))
first_frame_segm_mask = (mask * 255).astype(np.uint8)
if first_frame_segm_mask is not None:
cv2.imwrite(self.mask_save_path, first_frame_segm_mask)
else:
first_frame_segm_mask = None
(
self.video,
self.img_objs,
self.json_objs,
self.first_frame_segm_mask,
) = (
video,
img_objs,
json_objs,
first_frame_segm_mask,
)
return False
return True
@time_block("Grounded-segment-Anything inference w.r.t first frame mask ", logger)
def run_grounded_sam(self, frame_save_path: str, mask_save_path: str = None, device_id=0):
args = self._args
# Change current working directory for Grounded-Segment-Anything inference.
mask = run_grounded_sam(frame_save_path, mask_save_path, args.text_prompt, args.grounded_sam_script, args.grounded_sam_config, args.grounded_sam_checkpoint_path,
args.sam_checkpoint_path,
args.grounded_sam_repo_path, device_id=device_id)
return mask
def kpt_tracking(self):
args = self._args
device_id = args.tracking_device_id
cuda_device = (
torch.device(f"cuda:{device_id}")
if torch.cuda.is_available()
else torch.device("cpu")
)
video = self.video
with time_block("Kpt tracking routine. ", logger):
first_frame = video[0, 0].permute(1, 2, 0).int()
first_frame = first_frame.detach().cpu().numpy().astype(np.uint8)
end_effector_position = self.end_effector_position
queries: torch.Tensor = torch.FloatTensor(end_effector_position)
queries = queries.unsqueeze(0) # 1 x N x 2
end_effector_position = torch.cat(
[torch.ones_like(queries[..., 0:1]) * 0, queries], dim=2
) # ! 1 x N x 3
# logger.info(end_effector_position.shape)
# end_effector_position = end_effector_position.unsqueeze(0) # ! 1 x N x 2
logger.info(f"the end_effector_positions is {end_effector_position}")
if args.use_segm_mask and self.first_frame_segm_mask is not None:
segm_mask = np.array(self.first_frame_segm_mask)
segm_mask = torch.from_numpy(segm_mask)[None, None]
else:
segm_mask = None
keypoint_tracking_method = KEYPOINT_TRACKING_DICT[args.keypoint_tracking_method.lower()]
if keypoint_tracking_method == KEYPOINT_TRACKING_METHODS.COTRACKER:
if not COTRACKER_INSTALLED:
raise Exception("Cotracker is not installed, however, the kpt-tracking method is set to cotracker.")
end_effector_position = end_effector_position.to(cuda_device)
if args.checkpoint is not None:
model = CoTrackerPredictorWrapper(checkpoint=args.checkpoint, device=cuda_device)
else:
model = torch.hub.load("facebookresearch/co-tracker", "cotracker2")
model = model.to(cuda_device)
video = video.to(cuda_device)
segm_mask = segm_mask.to(cuda_device) if segm_mask is not None else None
pred_tracks, pred_visibility = model(
video=video,
grid_size=args.grid_size,
grid_query_frame=args.grid_query_frame,
backward_tracking=args.backward_tracking,
queries=end_effector_position,
segm_mask=segm_mask,
)
pred_tracks = pred_tracks.detach().cpu().numpy()
pred_visibility = pred_visibility.detach().cpu().numpy()
elif keypoint_tracking_method == KEYPOINT_TRACKING_METHODS.SPATIAL_TRACKER:
if not SPATIAL_TRACKER_INSTALLED:
raise Exception("SpaTracker is not installed, however, the kpt-tracking method is set to spatial_tracker.")
torch.cuda.empty_cache()
# Change current working directory for Grounded-Segment-Anything inference.
pwd = os.getcwd()
os.chdir(args.spatial_tracker_repo_path)
cuda_visible_devices = os.environ["CUDA_VISIBLE_DEVICES"] if "CUDA_VISIBLE_DEVICES" in os.environ else None
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.tracking_device_id)
spatracker_args = parse_spatracker_args()
segm_mask = segm_mask.cpu().numpy() if segm_mask is not None else None
with Pool(processes=1) as pool:
res = pool.starmap(spatracker_predict, [(spatracker_args, video, end_effector_position, segm_mask)])
pred_tracks, pred_visibility = res[0][0], res[0][1]
if cuda_visible_devices is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = cuda_visible_devices
else:
del os.environ["CUDA_VISIBLE_DEVICES"]
os.chdir(pwd)
elif keypoint_tracking_method == KEYPOINT_TRACKING_METHODS.DINO_TRACKER:
raise Exception("Dino-tracker method is currently not supported !")
json_stored_path = self.root_dir
os.makedirs(self.model_inference_path, exist_ok=True)
tracker_data_save_path = osp.join(self.model_inference_path, "tracker_data")
tracker_img_save_path = osp.join(self.model_inference_path, "tracker_img")
os.makedirs(tracker_data_save_path, exist_ok=True)
os.makedirs(tracker_img_save_path, exist_ok=True)
np.save(osp.join(tracker_data_save_path, "pred_tracks"), pred_tracks)
np.save(osp.join(tracker_data_save_path, "pred_visibility"), pred_visibility)
pred_tracks = pred_tracks[0, :, : len(args.keypoint_ids)] # N x num_keypoints
pred_visibilities = pred_visibility[0, :, : len(args.keypoint_ids)] # N x num_keypoints
all_pred_err_float = []
all_pred_err_int = []
img_objs = self.img_objs
json_objs = self.json_objs
with time_block("Saving kpt tracking inference result to annotated images and json objs. ", logger):
for frame_idx, (single_img, single_json_obj, frame, visibility) in tqdm(
enumerate(zip(img_objs, json_objs, pred_tracks, pred_visibilities))
):
json_keypoints = np.asarray(single_json_obj["objects"][0]["keypoints"])
json_keypoints = json_keypoints[np.asarray(args.keypoint_ids)]
pred_err_float_per_frame = []
pred_err_int_per_frame = []
for point_idx, (point, vis_flag) in enumerate(zip(frame, visibility)):
color = (255, 255, 0) if vis_flag else (255, 0, 0)
single_img = cv2.circle(
single_img,
(int(point[0]), int(point[1])),
radius=5,
color=color,
thickness=-1,
)
single_img = cv2.circle(
single_img,
(int(json_keypoints[point_idx]["projected_location"][0]), int(json_keypoints[point_idx]["projected_location"][1])),
radius=5,
color=(0, 0, 255),
thickness=-1,
)
point = point.tolist()
json_keypoints[point_idx]["predicted_location"] = [point[0], point[1]]
if args.has_gt:
pred_err_float_per_frame.append(
json_keypoints[point_idx]["projected_location"]
- np.array(point)
)
pred_err_int_per_frame.append(
json_keypoints[point_idx]["projected_location"]
- np.array([int(point[0]), int(point[1])])
)
if args.has_gt:
pred_err_int_per_frame = np.stack(pred_err_int_per_frame)
pred_err_float_per_frame = np.stack(pred_err_float_per_frame)
all_pred_err_float.append(pred_err_float_per_frame)
all_pred_err_int.append(pred_err_int_per_frame)
# Construct the path for saving the image
save_path = osp.join(
tracker_img_save_path,
f"{frame_idx:05d}.png",
)
cv2.imwrite(save_path, single_img)
single_json_obj_save_path = osp.join(
json_stored_path, f"{frame_idx:06d}.json"
)
with open(single_json_obj_save_path, "w") as j:
json.dump(single_json_obj, j, indent=4)
if args.has_gt:
all_pred_err_float = np.stack(all_pred_err_float)
all_pred_err_int = np.stack(all_pred_err_int)
os_env = os.environ.copy()
dir_path = self.root_dir
ffmpeg_comma = f"ffmpeg -framerate 10 -pattern_type glob -y -i '{dir_path}/*.rgb.jpg' -c:v libx264 -pix_fmt yuv420p {dir_path}/outputs.mp4"
process = subprocess.run(
ffmpeg_comma,
shell=True,
env=os_env,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
)
ffmpeg_comma = f"ffmpeg -framerate 10 -pattern_type glob -y -i '{osp.join(tracker_img_save_path, '*.png')}' -c:v libx264 -pix_fmt yuv420p {osp.join(tracker_img_save_path, f'outputs_{args.keypoint_tracking_method}.mp4')}"
process = subprocess.run(
ffmpeg_comma,
shell=True,
env=os_env,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
)
if args.has_gt:
fig, axs = plt.subplots(len(args.keypoint_ids), 2, layout="constrained")
dataset_len = len(img_objs)
if len(args.keypoint_ids) == 1:
axs = [axs]
for ax_ind, ax in enumerate(axs):
axs[ax_ind][0].plot(
np.linspace(0, dataset_len, dataset_len),
all_pred_err_float[:, ax_ind, 0],
color="green",
label="float",
)
axs[ax_ind][1].plot(
np.linspace(0, dataset_len, dataset_len),
all_pred_err_int[:, ax_ind, 1],
color="red",
label="int",
)
axs[ax_ind][0].plot(
np.linspace(0, dataset_len, dataset_len),
np.tile(np.mean(all_pred_err_float[:, ax_ind, 0]), dataset_len),
color="green",
label="float",
)
axs[ax_ind][1].plot(
np.linspace(0, dataset_len, dataset_len),
np.tile(np.mean(all_pred_err_int[:, ax_ind, 1]), dataset_len),
color="red",
label="int",
)
axs[ax_ind][0].set_title("pred_error_x")
axs[ax_ind][1].set_title("pred_error_y")
fig.suptitle("pred_error v.s. time_steps")
plt.legend()
plt.show()
def run_caliberate_camera(self):
args = self._args
output_dir = osp.join(self.root_dir, SAVE_TAG, "%s_outputs" % SAVE_TAG)
os.makedirs(output_dir, exist_ok=True)
sliding_window_step = (
self.len_frame
- args.win_len
)
# initialize caliberate related method options.
zhangzhengyou_flags = None
caliberate_method = None
if args.caliberate_method.upper() == "PNP":
caliberate_method = CALIBERATION_METHODS.PNP
elif args.caliberate_method.upper() == "ZHANGZHENGYOU":
if args.intrinsics_guess:
zhangzhengyou_flags = cv2.CALIB_USE_INTRINSIC_GUESS
else:
zhangzhengyou_flags = None
caliberate_method = CALIBERATION_METHODS.ZHANGZHENGYOU
elif args.caliberate_method.upper() == "EASYHEC":
caliberate_method = CALIBERATION_METHODS.EASYHEC
else:
raise NotImplementedError(
f"Caliberation method {args.caliberate_method} is not implemented yet."
)
with time_block("Perspective-n-Points routine for camera caliberation procedure. ", logger):
(
avg_trans_err,
avg_rot_err,
avg_reproj_err,
_,
) = caliberate_camera(
image_objs=self.img_objs,
json_objs=self.json_objs,
output_dir=output_dir,
num_manipulator_keypoints=args.num_keypoints,
keypoint_ids=args.keypoint_ids,
sliding_window_step=sliding_window_step,
verbose=args.verbose,
caliberate_method=caliberate_method,
var_x=args.var_x,
var_y=args.var_y,
render_open3d=False,
pnp_refinement=args.pnp_refinement,
pnp_flag=args.pnp_flag,
use_pnp_ransac=args.use_pnp_ransac,
has_gt=args.has_gt,
return_sample_result=True,
zhangzhengyou_flags=zhangzhengyou_flags,
nvdiffrast_render=False,
urdf_path=args.urdf_path
)
if args.verbose and args.has_gt:
logger.info(
f"avg-trans-err:{avg_trans_err}, avg-rot-err:{avg_rot_err}, avg-rproj-err:{avg_reproj_err}"
)
if __name__ == "__main__":
args = parse_easycalib_default_args(cli_input=True)
kalib = Kalib(args)
calibrated = kalib.preprocess(SAVE_TAG)
if not calibrated:
kalib.kpt_tracking()
kalib.run_caliberate_camera()
kalib.post_process()