-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathactive_train_towers.py
197 lines (173 loc) · 10 KB
/
active_train_towers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import argparse
import pickle
from torch.utils.data import DataLoader
from learning.active.active_train import active_train
from learning.domains.towers.active_utils import sample_sequential_data, sample_unlabeled_data, get_predictions, get_labels, get_subset, PoolSampler, sample_next_block
from learning.domains.towers.tower_data import TowerDataset, TowerSampler
from learning.models.ensemble import Ensemble
from learning.models.bottomup_net import BottomUpNet
from learning.models.gn import FCGN, ConstructableFCGN, FCGNFC
from learning.models.lstm import TowerLSTM
from learning.active.utils import ActiveExperimentLogger
from agents.panda_agent import PandaAgent, PandaClientAgent
from tamp.misc import load_blocks
def run_active_towers(args):
logger = ActiveExperimentLogger.setup_experiment_directory(args)
# Initialize agent with supplied blocks (only works with args.block_set_fname set)
if len(args.pool_fname) > 0:
raise NotImplementedError()
elif args.block_set_fname is not '':
with open(args.block_set_fname, 'rb') as f:
block_set = pickle.load(f)
else:
raise NotImplementedError()
if args.exec_mode == 'simple-model' or args.exec_mode == 'noisy-model':
agent = None
elif args.exec_mode == 'sim' or args.exec_mode == 'real':
if args.use_panda_server:
agent = PandaClientAgent()
else:
block_set = load_blocks(fname=args.block_set_fname,
num_blocks=10,
remove_ixs=[1])
agent = PandaAgent(block_set)
# Initialize ensemble.
if args.model == 'fcgn':
base_model = FCGN
base_args = {'n_hidden': args.n_hidden, 'n_in': 14}
elif args.model == 'fcgn-fc':
base_model = FCGNFC
base_args = {'n_hidden': args.n_hidden, 'n_in': 14}
elif args.model == 'fcgn-con':
base_model = ConstructableFCGN
base_args = {'n_hidden': args.n_hidden, 'n_in': 14}
elif args.model == 'lstm':
base_model = TowerLSTM
base_args = {'n_hidden': args.n_hidden, 'n_in': 14}
elif args.model == 'bottomup-shared':
base_model = BottomUpNet
base_args = {'n_hidden': args.n_hidden, 'n_in': 14, 'share_weights': True, 'max_blocks': 5}
elif args.model == 'bottomup-unshared':
base_model = BottomUpNet
base_args = {'n_hidden': args.n_hidden, 'n_in': 14, 'share_weights': False, 'max_blocks': 5}
else:
raise NotImplementedError()
ensemble = Ensemble(base_model=base_model,
base_args=base_args,
n_models=args.n_models)
# Choose a sampler and check if we are limiting the blocks to work with.
block_set = None
if len(args.pool_fname) > 0:
pool_sampler = PoolSampler(args.pool_fname)
data_subset_fn = pool_sampler.get_subset
data_sampler_fn = pool_sampler.sample_unlabeled_data
elif args.block_set_fname is not '':
data_subset_fn = get_subset
with open(args.block_set_fname, 'rb') as f:
# TODO: Unify block loading
block_set = pickle.load(f)
if args.exec_mode == "sim" or args.exec_mode == "real":
block_set = load_blocks(fname=args.block_set_fname,
num_blocks=10)
data_sampler_fn = lambda n: sample_unlabeled_data(n, block_set=block_set)
else:
data_subset_fn = get_subset
data_sampler_fn = sample_unlabeled_data
# Sample initial dataset.
if len(args.init_data_fname) > 0:
print(f'Loading an initial dataset from {args.init_data_fname}')
# A good dataset to use is learning/data/random_blocks_(x40000)_5blocks_uniform_mass.pkl
with open(args.init_data_fname, 'rb') as handle:
towers_dict = pickle.load(handle)
dataset = TowerDataset(towers_dict,
augment=True,
K_skip=4) # From this dataset, this means we start with 10 towers/size (before augmentation).
with open('learning/data/random_blocks_(x1000.0)_constructable_val.pkl', 'rb') as handle:
val_dict = pickle.load(handle)
val_dataset = TowerDataset(val_dict,
augment=True,
K_skip=10)
elif args.sampler == 'sequential' or args.strategy == 'subtower' or args.strategy == 'subtower-greedy':
print('Sampling initial dataset sequentially. Dataset NOT sampled on real robot.')
towers_dict = sample_sequential_data(block_set, None, 40)
towers_dict = get_labels(towers_dict, 'noisy-model', agent, logger, args.xy_noise)
dataset = TowerDataset(towers_dict, augment=True, K_skip=1)
val_towers_dict = sample_sequential_data(block_set, None, 40)
val_towers_dict = get_labels(val_towers_dict, 'noisy-model', agent, logger, args.xy_noise)
val_dataset = TowerDataset(val_towers_dict, augment=False, K_skip=1)
if block_set is None:
raise NotImplementedError()
data_sampler_fn = lambda n_samples: sample_sequential_data(block_set, dataset, n_samples)
else:
print('Sampling initial dataset randomly.')
towers_dict = sample_unlabeled_data(40, block_set=block_set)
towers_dict = get_labels(towers_dict, args.exec_mode, agent, logger, args.xy_noise)
dataset = TowerDataset(towers_dict, augment=True, K_skip=1)
val_towers_dict = sample_unlabeled_data(40, block_set=block_set)
val_towers_dict = get_labels(val_towers_dict, args.exec_mode, agent, logger, args.xy_noise)
val_dataset = TowerDataset(val_towers_dict, augment=False, K_skip=1)
if args.strategy == 'subtower-greedy':
data_sampler_fn = lambda n_samples, bases: sample_next_block(n_samples, bases, block_set)
if args.strategy == 'subtower-random':
data_sampler_fn = lambda n_samples, bases: sample_next_block(n_samples, bases, block_set)
if args.strategy == 'subtower':
data_sampler_fn = lambda n: sample_unlabeled_data(n, block_set=block_set, range_n_blocks=(5, 5))
#print(len(dataset), len(val_dataset))
sampler = TowerSampler(dataset=dataset,
batch_size=args.batch_size,
shuffle=True,
oversample=False)
dataloader = DataLoader(dataset,
batch_sampler=sampler)
val_sampler = TowerSampler(dataset=val_dataset,
batch_size=args.batch_size,
shuffle=False)
val_dataloader = DataLoader(val_dataset,
batch_sampler=val_sampler)
print('Starting training from scratch.')
if args.exec_mode == 'real':
input('Press enter to confirm you want to start training from scratch.')
active_train(ensemble=ensemble,
dataset=dataset,
val_dataset=val_dataset,
dataloader=dataloader,
val_dataloader=val_dataloader,
data_sampler_fn=data_sampler_fn,
data_label_fn=get_labels,
data_pred_fn=get_predictions,
data_subset_fn=data_subset_fn,
logger=logger,
agent=agent,
args=args)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--max-acquisitions',
type=int,
default=1000,
help='Number of iterations to run the main active learning loop for.')
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--n-models', type=int, default=7, help='Number of models in the ensemble.')
parser.add_argument('--n-hidden', type=int, default=64)
parser.add_argument('--n-epochs', type=int, default=50)
parser.add_argument('--init-data-fname', type=str, default='')
parser.add_argument('--block-set-fname', type=str, default='', help='File containing a list of AT LEAST 5 blocks (block_utils.Object) where the block.name is formatted obj_#')
parser.add_argument('--n-train-init', type=int, default=100) # NOTE: I don't think this is being used anywhere?
parser.add_argument('--n-samples', type=int, default=10000)
parser.add_argument('--n-acquire', type=int, default=10)
parser.add_argument('--exp-name', type=str, default='', help='Where results will be saved. Randon number if not specified.')
parser.add_argument('--strategy', choices=['random', 'bald', 'subtower', 'subtower-greedy', 'subtower-random'], default='bald', help='[random] chooses towers randomly. [bald] scores each tower with the BALD score. [subtower-greedy] chooses a tower by adding blocks one at a time and keeping towers with the highest bald score [subtower] is similar to subtower-greedy, but we multiply the bald score of each tower by the probabiliy that the tower is constructible.')
parser.add_argument('--sampler', choices=['random', 'sequential'], default='random', help='Choose how the unlabeled pool will be generated. Sequential assumes every tower has a stable base.')
parser.add_argument('--pool-fname', type=str, default='')
parser.add_argument('--model', default='fcgn', choices=['fcgn', 'fcgn-fc', 'fcgn-con', 'lstm', 'bottomup-shared', 'bottomup-unshared'])
# simple-model: does not perturb the blocks, uses TowerPlanner to check constructability
# noisy-model: perturbs the blocks, uses TowerPlanner to check constructability
# sim: uses pyBullet with no noise
# real: uses the real robot
parser.add_argument('--exec-mode', default='noisy-model', choices=['simple-model', 'noisy-model', 'sim', 'real'])
parser.add_argument('--xy-noise', default=0.003, type=float, help='Variance in the normally distributed noise in block placements (used when args.exec-mode==noisy-model)')
parser.add_argument('--use-panda-server', action='store_true')
parser.add_argument('--debug', action='store_true')
args = parser.parse_args()
if args.debug:
import pdb; pdb.set_trace()
run_active_towers(args)