-
Notifications
You must be signed in to change notification settings - Fork 0
/
word2vec_tf.py
233 lines (201 loc) · 8.34 KB
/
word2vec_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# work in progress
import collections
import math
import os
import sys
import argparse
import random
import urllib
from tempfile import gettempdir
import zipfile
import numpy as np
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector
import matplotlib.pyplot as plt
current_path = os.path.dirname(os.path.realpath(sys.argv[0]))
parser = argparse.ArgumentParser()
parser.add_argument('--log_dir',
type=str,
default=os.path.join(current_path,'log'),
help='The log directory for TensorBoard Summeries.')
FLAGS, unparsed = parser.parse_known_args()
if not os.path.exists(FLAGS.log_dir):
os.makedirs(FLAGS.log_dir)
url = 'http://mattmahoney.net/dc/'
def maybe_download(filename, expected_bytes):
local_filename = os.path.join(gettempdir(), filename)
if not os.path.exists(local_filename):
local_filename, _ = urllib.request.urlretrieve(url + filename,local_filename)
statinfo = os.stat(local_filename)
if statinfo.st_size == expected_bytes:
print('Found and verified', filename)
else:
print(statinfo.st_size)
raise Exception('Failed to verify ' + local_filename +'. Can you get to it with a browser?')
return local_filename
def read_data(filename):
with zipfile.ZipFile(filename) as f:
data = tf.compat.as_str(f.read(f.namelist()[0])).split()
return data
filename = maybe_download('text8.zip', 31344016)
vocabulary = read_data(filename)
print('Data size', len(vocabulary))
def build_dataset(words,n_words):
'''
count : word count
dictionary: word to index
data :indexed_sentence
reversed_dictionary : index to word
'''
count = [['UNK',-1]]
count.extend(collections.Counter(words).most_common(n_words-1))
dictionary = dict()
for word,_ in count:
dictionary[word] = len(dictionary)
data = list()
unk_count = 0
for word in words:
index = dictionary.get(word,0)
if index == 0:
unk_count+=1
data.append(index)
count[0][1] = unk_count
reversed_dictionary = dict(zip(dictionary.values(),dictionary.keys()))
return data, count, dictionary, reversed_dictionary
vocabulary_size = 50000
data, count, dictionary, reversed_dictionary=build_dataset(vocabulary,vocabulary_size)
print('Most common words (+UNK)', count[:5])
print('\n')
print('Sample data', data[:10], [reversed_dictionary[i] for i in data[:10]])
print('Sample data', data[:8], '\n',[reversed_dictionary[i] for i in data[:8]])
data_index = 0
def generate_batch(data,batch_size, num_skips, skip_window):
global data_index
assert batch_size % num_skips == 0
assert num_skips <= 2 * skip_window
batch = np.ndarray(shape=(batch_size), dtype=np.int32)
labels = np.ndarray(shape=(batch_size,1),dtype=np.int32)
span = 2 * skip_window+1 #???
buffer = collections.deque(maxlen=span)
if data_index + span > len(data):
data_index = 0
buffer.extend(data[data_index:data_index+span])
data_index += span
for i in range(batch_size//num_skips):
context_words = [w for w in range(span) if w!=skip_window]
words_to_use = random.sample(context_words,num_skips)
for j,context_word in enumerate(words_to_use):
batch[i*num_skips+j]=buffer[skip_window]
labels[i*num_skips+j,0]=buffer[context_word]
if data_index == len(data):
buffer.extend(data[0:span])
data_index = span
else:
buffer.append(data[data_index])
data_index+=1
data_index = (data_index+len(data)-span)%len(data)
return batch,labels
batch = np.ndarray(shape=(16),dtype=np.int32)
labels = np.ndarray(shape=(16,1),dtype=np.int32)
span = 2 * 1+1
buffer = collections.deque(maxlen=span)
buffer.extend(data_[data_index:data_index+span])
for i in range(8):
context_words = [w for w in range(span) if w!=1]
words_to_use = random.sample(context_words,num_skips)
batch, labels = generate_batch(data=[5234, 3081, 12, 6, 195, 2, 3134, 46],
batch_size=16,num_skips=2,skip_window=1)
for i in range(16):
print(batch[i],reversed_dictionary[batch[i]],'->',labels[i,0],reversed_dictionary[labels[i,0]])
batch, labels = generate_batch(data,batch_size=8, num_skips=2, skip_window=1)
for i in range(8):
print(batch[i],reversed_dictionary[batch[i]],'->',labels[i,0],reversed_dictionary[labels[i,0]])
batch_size = 128
embedding_size = 128
skip_window = 1
num_skips = 2
num_sampled = 64
valid_size = 16
valid_window = 100
valid_examples = np.random.choice(valid_window,valid_size,replace=False)
tf.reset_default_graph()
graph = tf.Graph()
with graph.as_default():
with tf.name_scope('inputs'):
train_inputs = tf.placeholder(tf.int32,shape=[batch_size])
train_labels = tf.placeholder(tf.int32,shape=[batch_size,1])
valid_dataset = tf.constant(valid_examples,dtype=tf.int32)
with tf.name_scope('embeddings'):
embeddings = tf.Variable(tf.random_uniform([vocabulary_size,embedding_size],-1.0,1.0))
embed = tf.nn.embedding_lookup(embeddings,train_inputs)
with tf.name_scope('weights'):
nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size,embedding_size],stddev=1.0/math.sqrt(embedding_size)))
with tf.name_scope('biases'):
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.nn.nce_loss(weights=nce_weights,biases=nce_biases,
labels=train_labels,inputs=embed,num_sampled=num_sampled,
num_classes=vocabulary_size))
tf.summary.scalar('loss',loss)
with tf.name_scope('optimizer'):
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings),1,keepdims=True))
normalized_embeddings = embeddings/norm
valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings,valid_dataset)
similarity = tf.matmul(valid_embeddings,normalized_embeddings,transpose_b=True)
merged = tf.summary.merge_all()
saver = tf.train.Saver()
vocabulary_size = 100
num_steps = int(1e3)+1
with tf.Session(graph=graph) as sess:
writer = tf.summary.FileWriter('./log',sess.graph)
tf.global_variables_initializer().run()
print('Initialized')
average_loss = 0
for step in range(num_steps):
batch_input, batch_labels= generate_batch(batch_size,num_skips,skip_window)
feed_dict = {train_inputs:batch_input,train_labels:batch_labels}
run_metadata = tf.RunMetadata()
_, summary, loss_val = sess.run([optimizer,merged,loss],feed_dict=feed_dict,run_metadata=run_metadata)
average_loss += loss_val
writer.add_summary(summary,step)
if step == (num_steps-1):
writer.add_run_metadata(run_metadata,'step{}'.format(step))
if step % 100 ==0:
if step>0:
average_loss /= 2000
print('Average loss at step', step, ':',average_loss)
average_loss = 0
final_embeddings = normalized_embeddings.eval()
print('writing')
with open('log' + '/metadata.tsv', 'w') as f:
for i in range(vocabulary_size):
f.write(reversed_dictionary[i] + '\n')
saver.save(sess, os.path.join('log', 'model.ckpt'))
config = projector.ProjectorConfig()
embedding_conf = config.embeddings.add()
embedding_conf.tensor_name = embeddings.name
embedding_conf.metadata_path = os.path.join('log', 'metadata.tsv')
projector.visualize_embeddings(writer, config)
if i % 10 ==0:
print(i)
writer.close()
print('finish')
def plot_with_labels(low_dim_embs, labels):
assert low_dim_embs.shape[0] >= len(labels), 'More labels than embeddings'
plt.figure(figsize=(18, 18)) # in inches
for i, label in enumerate(labels):
x, y = low_dim_embs[i, :]
plt.scatter(x, y)
plt.annotate(
label,
xy=(x, y),
xytext=(5, 2),
textcoords='offset points',
ha='right',
va='bottom')
plt.show()
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=250, method='exact')
low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :])
labels = [reversed_dictionary[i] for i in range(plot_only)]
plot_with_labels(low_dim_embs, labels)