-
Notifications
You must be signed in to change notification settings - Fork 35
/
vfdecrypt.c
533 lines (471 loc) · 17.1 KB
/
vfdecrypt.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/*
** Copyright (c) 2006
** Ralf-Philipp Weinmann <ralf@coderpunks.org>
** Jacob Appelbaum <jacob@appelbaum.net>
** Christian Fromme <kaner@strace.org>
**
** Decrypt a AES-128 encrypted disk image given the encryption key
** and the hmacsha1key of the image. These two keys can be found
** out by running hdiutil attach with -debug on the disk image.
**
** Permission is hereby granted, free of charge, to any person
** obtaining a copy of this software and associated documentation
** files (the "Software"), to deal in the Software without
** restriction, including without limitation the rights to use,
** copy, modify, merge, publish, distribute, sublicense, and/or sell
** copies of the Software, and to permit persons to whom the
** Software is furnished to do so, subject to the following
** conditions:
**
** The above copyright notice and this permission notice shall be
** included in all copies or substantial portions of the Software.
**
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
** OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
** NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
** HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
** WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
** FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
** OTHER DEALINGS IN THE SOFTWARE.
**/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include <arpa/inet.h>
#include <openssl/sha.h>
#include <openssl/aes.h>
#include <openssl/hmac.h>
#include <openssl/evp.h>
#define OSSwapHostToBigInt32(x) ntohl(x)
/* length of message digest output in bytes (160 bits) */
#define MD_LENGTH 20
/* length of cipher key in bytes (128 bits) */
#define CIPHER_KEY_LENGTH 16
/* block size of cipher in bytes (128 bits) */
#define CIPHER_BLOCKSIZE 16
/* number of iterations for PBKDF2 key derivation */
#define PBKDF2_ITERATION_COUNT 1000
typedef struct {
/* 0x000: */ uint8_t filler1[48];
/* 0x034: */ uint32_t kdf_iteration_count;
/* 0x034: */ uint32_t kdf_salt_len;
/* 0x038: */ uint8_t kdf_salt[48]; /* salt value for key derivation */
/* 0x068: */ uint8_t unwrap_iv[32]; /* IV for encryption-key unwrapping */
/* 0x088: */ uint32_t len_wrapped_aes_key;
/* 0x08c: */ uint8_t wrapped_aes_key[296];
/* 0x1b4: */ uint32_t len_hmac_sha1_key;
/* 0x1b8: */ uint8_t wrapped_hmac_sha1_key[300];
/* 0x1b4: */ uint32_t len_integrity_key;
/* 0x2e8: */ uint8_t wrapped_integrity_key[48];
/* 0x318: */ uint8_t filler6[484];
} cencrypted_v1_header;
typedef struct {
unsigned char sig[8];
uint32_t version;
uint32_t enc_iv_size;
uint32_t unk1;
uint32_t unk2;
uint32_t unk3;
uint32_t unk4;
uint32_t unk5;
unsigned char uuid[16];
uint32_t blocksize;
uint64_t datasize;
uint64_t dataoffset;
uint8_t filler1[0x260];
uint32_t kdf_algorithm;
uint32_t kdf_prng_algorithm;
uint32_t kdf_iteration_count;
uint32_t kdf_salt_len; /* in bytes */
uint8_t kdf_salt[32];
uint32_t blob_enc_iv_size;
uint8_t blob_enc_iv[32];
uint32_t blob_enc_key_bits;
uint32_t blob_enc_algorithm;
uint32_t blob_enc_padding;
uint32_t blob_enc_mode;
uint32_t encrypted_keyblob_size;
uint8_t encrypted_keyblob[0x30];
} cencrypted_v2_pwheader;
void print_hex(uint8_t * /* data */, uint32_t /* len */);
void convert_hex(char * /* str */, uint8_t * /* bytes */,
int /* maxlen */);
void dump_v2_header(void * /* hdr */);
void adjust_v1_header_byteorder(cencrypted_v1_header * /* hdr */);
void adjust_v2_header_byteorder(cencrypted_v2_pwheader * /* pwhdr */);
void print_hex(uint8_t *data, uint32_t len) {
uint32_t ctr;
char *sep;
if (len > 64) len = 64;
for(ctr = 0; ctr < len; ctr++) {
sep = (((ctr&7)==0)&&ctr) ? "\n" : "";
fprintf(stderr, "%s%02x ", sep, data[ctr]);
}
fprintf(stderr, "\n\n");
}
void convert_hex(char *str, uint8_t *bytes, int maxlen) {
int bytelen = maxlen;
int rpos, wpos = 0;
for(rpos = 0; rpos < bytelen; rpos++) {
sscanf(&str[rpos*2], "%02hhx", &bytes[wpos++]);
}
}
void dump_v2_header(void *hdr) {
cencrypted_v2_pwheader *pwhdr = (cencrypted_v2_pwheader *) hdr;
fprintf(stderr, "sig\t%8s\n", pwhdr->sig);
fprintf(stderr, "blocksize\t%"PRIX32"\n", pwhdr->blocksize);
fprintf(stderr, "datasize\t%"PRIu64"\n", pwhdr->datasize);
fprintf(stderr, "dataoffset\t%"PRIu64"\n", pwhdr->dataoffset);
/* 103: CSSM_ALGID_PKCS5_PBKDF2 */
fprintf(stderr, "keyDerivationAlgorithm %lu\n", (unsigned long) pwhdr->kdf_algorithm);
fprintf(stderr, "keyDerivationPRNGAlgorithm %lu\n", (unsigned long) pwhdr->kdf_prng_algorithm);
/* by default the iteration count should be 1000 iterations */
fprintf(stderr, "keyDerivationIterationCount %lu\n", (unsigned long) pwhdr->kdf_iteration_count);
fprintf(stderr, "keyDerivationSaltSize %lu\n", (unsigned long) pwhdr->kdf_salt_len);
fprintf(stderr, "keyDerivationSalt \n");
print_hex(pwhdr->kdf_salt, pwhdr->kdf_salt_len);
fprintf(stderr, "blobEncryptionIVSize %lu\n", (unsigned long) pwhdr->blob_enc_iv_size);
fprintf(stderr, "blobEncryptionIV \n");
print_hex(pwhdr->blob_enc_iv, pwhdr->blob_enc_iv_size);
fprintf(stderr, "blobEncryptionKeySizeInBits %lu\n", (unsigned long) pwhdr->blob_enc_key_bits);
/* 17: CSSM_ALGID_3DES_3KEY_EDE */
fprintf(stderr, "blobEncryptionAlgorithm %lu\n", (unsigned long) pwhdr->blob_enc_algorithm);
/* 7: CSSM_PADDING_PKCS7 */
fprintf(stderr, "blobEncryptionPadding %lu\n", (unsigned long) pwhdr->blob_enc_padding);
/* 6: CSSM_ALGMODE_CBCPadIV8 */
fprintf(stderr, "blobEncryptionMode %lu\n", (unsigned long) pwhdr->blob_enc_mode);
fprintf(stderr, "encryptedBlobSize %lu\n", (unsigned long) pwhdr->encrypted_keyblob_size);
fprintf(stderr, "encryptedBlob \n");
print_hex(pwhdr->encrypted_keyblob, pwhdr->encrypted_keyblob_size);
}
void adjust_v1_header_byteorder(cencrypted_v1_header *hdr) {
hdr->kdf_iteration_count = htonl(hdr->kdf_iteration_count);
hdr->kdf_salt_len = htonl(hdr->kdf_salt_len);
hdr->len_wrapped_aes_key = htonl(hdr->len_wrapped_aes_key);
hdr->len_hmac_sha1_key = htonl(hdr->len_hmac_sha1_key);
hdr->len_integrity_key = htonl(hdr->len_integrity_key);
}
#define swap32(x) x = OSSwapHostToBigInt32(x)
#define swap64(x) x = ((uint64_t) ntohl(x >> 32)) | (((uint64_t) ntohl((uint32_t) (x & 0xFFFFFFFF))) << 32)
void adjust_v2_header_byteorder(cencrypted_v2_pwheader *pwhdr) {
swap32(pwhdr->blocksize);
swap64(pwhdr->datasize);
swap64(pwhdr->dataoffset);
pwhdr->kdf_algorithm = htonl(pwhdr->kdf_algorithm);
pwhdr->kdf_prng_algorithm = htonl(pwhdr->kdf_prng_algorithm);
pwhdr->kdf_iteration_count = htonl(pwhdr->kdf_iteration_count);
pwhdr->kdf_salt_len = htonl(pwhdr->kdf_salt_len);
pwhdr->blob_enc_iv_size = htonl(pwhdr->blob_enc_iv_size);
pwhdr->blob_enc_key_bits = htonl(pwhdr->blob_enc_key_bits);
pwhdr->blob_enc_algorithm = htonl(pwhdr->blob_enc_algorithm);
pwhdr->blob_enc_padding = htonl(pwhdr->blob_enc_padding);
pwhdr->blob_enc_mode = htonl(pwhdr->blob_enc_mode);
pwhdr->encrypted_keyblob_size = htonl(pwhdr->encrypted_keyblob_size);
}
HMAC_CTX *hmacsha1_ctx;
AES_KEY aes_decrypt_key;
int CHUNK_SIZE=4096; // default
/**
* * Compute IV of current block as
* * truncate128(HMAC-SHA1(hmacsha1key||blockno))
* */
void compute_iv(uint32_t chunk_no, uint8_t *iv) {
unsigned char mdResult[MD_LENGTH];
unsigned int mdLen;
chunk_no = OSSwapHostToBigInt32(chunk_no);
HMAC_Init_ex(hmacsha1_ctx, NULL, 0, NULL, NULL);
HMAC_Update(hmacsha1_ctx, (void *) &chunk_no, sizeof(uint32_t));
HMAC_Final(hmacsha1_ctx, mdResult, &mdLen);
memcpy(iv, mdResult, CIPHER_BLOCKSIZE);
}
void decrypt_chunk(uint8_t *ctext, uint8_t *ptext, uint32_t chunk_no) {
uint8_t iv[CIPHER_BLOCKSIZE];
compute_iv(chunk_no, iv);
AES_cbc_encrypt(ctext, ptext, CHUNK_SIZE, &aes_decrypt_key, iv, AES_DECRYPT);
}
/* DES3-EDE unwrap operation loosely based on to RFC 2630, section 12.6
* wrapped_key has to be 40 bytes in length. */
int apple_des3_ede_unwrap_key(uint8_t *wrapped_key, int wrapped_key_len, uint8_t *decryptKey, uint8_t *unwrapped_key) {
EVP_CIPHER_CTX *ctx;
uint8_t *TEMP1, *TEMP2, *CEKICV;
uint8_t IV[8] = { 0x4a, 0xdd, 0xa2, 0x2c, 0x79, 0xe8, 0x21, 0x05 };
int outlen, tmplen, i;
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
ctx = EVP_CIPHER_CTX_new();
#else
ctx = malloc(sizeof(*ctx));
#endif
if (!ctx) {
fprintf(stderr, "Out of memory: EVP_CIPHER_CTX!\n");
return(-1);
}
EVP_CIPHER_CTX_init(ctx);
/* result of the decryption operation shouldn't be bigger than ciphertext */
TEMP1 = malloc(wrapped_key_len);
TEMP2 = malloc(wrapped_key_len);
CEKICV = malloc(wrapped_key_len);
/* uses PKCS#7 padding for symmetric key operations by default */
EVP_DecryptInit_ex(ctx, EVP_des_ede3_cbc(), NULL, decryptKey, IV);
if(!EVP_DecryptUpdate(ctx, TEMP1, &outlen, wrapped_key, wrapped_key_len)) {
fprintf(stderr, "internal error (1) during key unwrap operation!\n");
return(-1);
}
if(!EVP_DecryptFinal_ex(ctx, TEMP1 + outlen, &tmplen)) {
fprintf(stderr, "internal error (2) during key unwrap operation!\n");
return(-1);
}
outlen += tmplen;
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
EVP_CIPHER_CTX_reset(ctx);
#else
EVP_CIPHER_CTX_cleanup(ctx);
#endif
/* reverse order of TEMP3 */
for(i = 0; i < outlen; i++) TEMP2[i] = TEMP1[outlen - i - 1];
EVP_CIPHER_CTX_init(ctx);
/* uses PKCS#7 padding for symmetric key operations by default */
EVP_DecryptInit_ex(ctx, EVP_des_ede3_cbc(), NULL, decryptKey, TEMP2);
if(!EVP_DecryptUpdate(ctx, CEKICV, &outlen, TEMP2+8, outlen-8)) {
fprintf(stderr, "internal error (3) during key unwrap operation!\n");
return(-1);
}
if(!EVP_DecryptFinal_ex(ctx, CEKICV + outlen, &tmplen)) {
fprintf(stderr, "internal error (4) during key unwrap operation!\n");
return(-1);
}
outlen += tmplen;
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
EVP_CIPHER_CTX_reset(ctx);
#else
EVP_CIPHER_CTX_cleanup(ctx);
#endif
memcpy(unwrapped_key, CEKICV+4, outlen-4);
free(TEMP1);
free(TEMP2);
free(CEKICV);
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
EVP_CIPHER_CTX_free(ctx);
#else
free(ctx);
#endif
return(0);
}
int unwrap_v1_header(char *passphrase, cencrypted_v1_header *header, uint8_t *aes_key, uint8_t *hmacsha1_key) {
/* derived key is a 3DES-EDE key */
uint8_t derived_key[192/8];
PKCS5_PBKDF2_HMAC_SHA1(passphrase, strlen(passphrase), (unsigned char*)header->kdf_salt, 20,
PBKDF2_ITERATION_COUNT, sizeof(derived_key), derived_key);
if (apple_des3_ede_unwrap_key(header->wrapped_aes_key, 40, derived_key, aes_key) != 0)
return(-1);
if (apple_des3_ede_unwrap_key(header->wrapped_hmac_sha1_key, 48, derived_key, hmacsha1_key) != 0)
return(-1);
return(0);
}
int unwrap_v2_header(char *passphrase, cencrypted_v2_pwheader *header, uint8_t *aes_key, uint8_t *hmacsha1_key) {
/* derived key is a 3DES-EDE key */
uint8_t derived_key[192/8];
EVP_CIPHER_CTX *ctx;
uint8_t *TEMP1;
int outlen, tmplen;
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
ctx = EVP_CIPHER_CTX_new();
#else
ctx = malloc(sizeof(*ctx));
#endif
if (!ctx) {
fprintf(stderr, "Out of memory: EVP_CIPHER_CTX!\n");
return(-1);
}
PKCS5_PBKDF2_HMAC_SHA1(passphrase, strlen(passphrase), (unsigned char*)header->kdf_salt, 20,
PBKDF2_ITERATION_COUNT, sizeof(derived_key), derived_key);
print_hex(derived_key, 192/8);
EVP_CIPHER_CTX_init(ctx);
/* result of the decryption operation shouldn't be bigger than ciphertext */
TEMP1 = malloc(header->encrypted_keyblob_size);
/* uses PKCS#7 padding for symmetric key operations by default */
EVP_DecryptInit_ex(ctx, EVP_des_ede3_cbc(), NULL, derived_key, header->blob_enc_iv);
if(!EVP_DecryptUpdate(ctx, TEMP1, &outlen, header->encrypted_keyblob, header->encrypted_keyblob_size)) {
fprintf(stderr, "internal error (1) during key unwrap operation!\n");
return(-1);
}
if(!EVP_DecryptFinal_ex(ctx, TEMP1 + outlen, &tmplen)) {
fprintf(stderr, "internal error (2) during key unwrap operation!\n");
return(-1);
}
outlen += tmplen;
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
EVP_CIPHER_CTX_free(ctx);
#else
EVP_CIPHER_CTX_cleanup(ctx);
free(ctx);
#endif
memcpy(aes_key, TEMP1, 16);
memcpy(hmacsha1_key, TEMP1, 20);
return(0);
}
int determine_header_version(FILE *dmg) {
return(2);
}
int usage(char *message) {
fprintf(stderr, "%s\n", message);
fprintf(stderr, "Usage: vfdecrypt [-e] [-p password] [-k key] -i in-file -o out-file\n");
fprintf(stderr, "Option -e attempts to extract key from <in-file>\n");
exit(1);
}
int main(int argc, char *argv[]) {
FILE *in, *out;
cencrypted_v1_header v1header;
cencrypted_v2_pwheader v2header;
uint8_t hmacsha1_key[20], aes_key[16], inbuf[CHUNK_SIZE], outbuf[CHUNK_SIZE];
uint32_t chunk_no;
int hdr_version, c, optError = 0;
char inFile[512], outFile[512], passphrase[512], cmd[640];
int iflag = 0, oflag = 0, pflag = 0, kflag = 0, verbose = 0;
extern char *optarg;
extern int optind, optopt;
memset(inFile, 0, 512);
memset(outFile, 0, 512);
memset(passphrase, 0, 512);
memset(cmd, 0, 640);
/* This was the key used in iPhone1,1_1.0_1A543a_Restore.ipsw ... */
/*
convert_hex("28c909fc6d322fa18940f03279d70880", aes_key, 16);
convert_hex("e59a4507998347c70d5b8ca7ef090ecccc15e82d", hmacsha1_key, 20);
kflag = 1;
*/
while((c = getopt(argc, argv, "hvei:o:p:k:")) != -1) {
switch(c) {
case 'h':
usage("Help is on the way. Stay calm.");
break;
case 'v':
verbose++;
break;
case 'e':
*cmd = 1;
break;
case 'i':
if(optarg) strncpy(inFile, optarg, sizeof(inFile)-1);
iflag = 1;
break;
case 'o':
if (optarg) strncpy(outFile, optarg, sizeof(outFile)-1);
oflag = 1;
break;
case 'p':
if (optarg) strncpy(passphrase, optarg, sizeof(passphrase)-1);
pflag = 1;
break;
case 'k':
convert_hex(optarg, aes_key, 16);
convert_hex(optarg+32, hmacsha1_key, 20);
kflag=1;
break;
case '?':
fprintf(stderr, "Unknown option: -%c\n", optopt);
optError++;
break;
}
}
/* check to see if our user gave incorrect options */
if (optError) usage("Incorrect arguments.");
if (strlen(inFile) == 0) {
in = stdin;
} else {
if ((in = fopen(inFile, "rb")) == NULL) {
fprintf(stderr, "Error: unable to open %s\n", inFile);
exit(1);
}
}
if (*cmd && *inFile) {
sprintf(cmd,
"strings %s | grep '^[0-9a-fA-F]*$' | awk '{ if (length($1) == 72) print; }'",
inFile);
system(cmd);
exit(0);
}
if (strlen(outFile) == 0) {
out = stdout;
} else {
if ((out = fopen(outFile, "wb")) == NULL) {
fprintf(stderr, "Error: unable to open %s\n", outFile);
exit(1);
}
}
if (!pflag && !kflag) {
usage("No Passphrase given.");
exit(1);
}
hdr_version = determine_header_version(in);
if (verbose >= 1) {
if (hdr_version > 0) {
fprintf(stderr, "v%d header detected.\n", hdr_version);
} else {
fprintf(stderr, "unknown format.\n");
exit(1);
}
}
if (hdr_version == 1) {
fseek(in, (long) -sizeof(cencrypted_v1_header), SEEK_END);
if (fread(&v1header, sizeof(cencrypted_v1_header), 1, in) < 1) {
fprintf(stderr, "header corrupted?\n"), exit(1);
}
adjust_v1_header_byteorder(&v1header);
if(!kflag) unwrap_v1_header(passphrase, &v1header, aes_key, hmacsha1_key);
}
if (hdr_version == 2) {
fseek(in, 0L, SEEK_SET);
if (fread(&v2header, sizeof(cencrypted_v2_pwheader), 1, in) < 1) {
fprintf(stderr, "header corrupted?\n"), exit(1);
}
adjust_v2_header_byteorder(&v2header);
dump_v2_header(&v2header);
if(!kflag) unwrap_v2_header(passphrase, &v2header, aes_key, hmacsha1_key);
CHUNK_SIZE = v2header.blocksize;
}
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
hmacsha1_ctx = HMAC_CTX_new();
#else
hmacsha1_ctx = malloc(sizeof(*hmacsha1_ctx));
#endif
if (!hmacsha1_ctx) {
fprintf(stderr, "Out of memory: HMAC CTX!\n");
exit(1);
}
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
HMAC_CTX_reset(hmacsha1_ctx);
#else
HMAC_CTX_init(hmacsha1_ctx);
#endif
HMAC_Init_ex(hmacsha1_ctx, hmacsha1_key, sizeof(hmacsha1_key), EVP_sha1(), NULL);
AES_set_decrypt_key(aes_key, CIPHER_KEY_LENGTH * 8, &aes_decrypt_key);
if (verbose >= 1) {
printf("AES Key: \n");
print_hex(aes_key, 16);
printf("SHA1 seed: \n");
print_hex(hmacsha1_key, 20);
}
if (hdr_version == 2) fseek(in, v2header.dataoffset, SEEK_SET);
else fseek(in, 0L, SEEK_SET);
chunk_no = 0;
while(fread(inbuf, CHUNK_SIZE, 1, in) > 0) {
decrypt_chunk(inbuf, outbuf, chunk_no);
chunk_no++;
if(hdr_version == 2 && (v2header.datasize-ftell(out)) < CHUNK_SIZE) {
fwrite(outbuf, v2header.datasize - ftell(out), 1, out);
break;
}
fwrite(outbuf, CHUNK_SIZE, 1, out);
}
if (verbose) fprintf(stderr, "%"PRIX32" chunks written\n", chunk_no);
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
HMAC_CTX_free(hmacsha1_ctx);
#else
HMAC_CTX_cleanup(hmacsha1_ctx);
free(hmacsha1_ctx);
#endif
return(0);
}