forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
140 lines (125 loc) · 5.36 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python
# Copyright (C) 2011-2020 Alexandre Gramfort
# <alexandre.gramfort@inria.fr>
import os
import os.path as op
from setuptools import setup
def parse_requirements_file(fname):
requirements = list()
with open(fname, 'r') as fid:
for line in fid:
req = line.strip()
if req.startswith('#'):
continue
# strip end-of-line comments
req = req.split('#', maxsplit=1)[0].strip()
requirements.append(req)
return requirements
# get the version (don't import mne here, so dependencies are not needed)
version = None
with open(op.join('mne', '_version.py'), 'r') as fid:
for line in (line.strip() for line in fid):
if line.startswith('__version__'):
version = line.split('=')[1].strip().strip('\'')
break
if version is None:
raise RuntimeError('Could not determine version')
DISTNAME = 'mne'
DESCRIPTION = 'MNE-Python project for MEG and EEG data analysis.'
MAINTAINER = 'Alexandre Gramfort'
MAINTAINER_EMAIL = 'alexandre.gramfort@inria.fr'
URL = 'https://mne.tools/dev/'
LICENSE = 'BSD-3-Clause'
DOWNLOAD_URL = 'http://github.com/mne-tools/mne-python'
VERSION = version
def package_tree(pkgroot):
"""Get the submodule list."""
# Adapted from VisPy
path = op.dirname(__file__)
subdirs = [op.relpath(i[0], path).replace(op.sep, '.')
for i in os.walk(op.join(path, pkgroot))
if '__init__.py' in i[2]]
return sorted(subdirs)
if __name__ == "__main__":
if op.exists('MANIFEST'):
os.remove('MANIFEST')
with open('README.rst', 'r') as fid:
long_description = fid.read()
# data_dependencies is empty, but let's leave them so that we don't break
# people's workflows who did `pip install mne[data]`
install_requires = parse_requirements_file('requirements_base.txt')
data_requires = []
hdf5_requires = parse_requirements_file('requirements_hdf5.txt')
test_requires = (parse_requirements_file('requirements_testing.txt') +
parse_requirements_file('requirements_testing_extra.txt'))
setup(name=DISTNAME,
maintainer=MAINTAINER,
include_package_data=True,
maintainer_email=MAINTAINER_EMAIL,
description=DESCRIPTION,
license=LICENSE,
url=URL,
version=VERSION,
download_url=DOWNLOAD_URL,
long_description=long_description,
long_description_content_type='text/x-rst',
zip_safe=False, # the package can run out of an .egg file
classifiers=['Intended Audience :: Science/Research',
'Intended Audience :: Developers',
'License :: OSI Approved',
'Programming Language :: Python',
'Topic :: Software Development',
'Topic :: Scientific/Engineering',
'Operating System :: Microsoft :: Windows',
'Operating System :: POSIX',
'Operating System :: Unix',
'Operating System :: MacOS',
'Programming Language :: Python :: 3',
],
keywords='neuroscience neuroimaging MEG EEG ECoG fNIRS brain',
project_urls={
'Documentation': 'https://mne.tools/',
'Source': 'https://github.com/mne-tools/mne-python/',
'Tracker': 'https://github.com/mne-tools/mne-python/issues/',
},
platforms='any',
python_requires='>=3.7',
install_requires=install_requires,
extras_require={
'data': data_requires,
'hdf5': hdf5_requires,
'test': test_requires,
},
packages=package_tree('mne'),
package_data={'mne': [
op.join('data', 'eegbci_checksums.txt'),
op.join('data', '*.sel'),
op.join('data', 'icos.fif.gz'),
op.join('data', 'coil_def*.dat'),
op.join('data', 'helmets', '*.fif.gz'),
op.join('data', 'FreeSurferColorLUT.txt'),
op.join('data', 'image', '*gif'),
op.join('data', 'image', '*lout'),
op.join('data', 'fsaverage', '*.fif'),
op.join('channels', 'data', 'layouts', '*.lout'),
op.join('channels', 'data', 'layouts', '*.lay'),
op.join('channels', 'data', 'montages', '*.sfp'),
op.join('channels', 'data', 'montages', '*.txt'),
op.join('channels', 'data', 'montages', '*.elc'),
op.join('channels', 'data', 'neighbors', '*.mat'),
op.join('datasets', 'sleep_physionet', 'SHA1SUMS'),
op.join('datasets', '_fsaverage', '*.txt'),
op.join('datasets', '_infant', '*.txt'),
op.join('datasets', '_phantom', '*.txt'),
op.join('html', '*.js'),
op.join('html', '*.css'),
op.join('html_templates', 'repr', '*.jinja'),
op.join('html_templates', 'report', '*.jinja'),
op.join('icons', '*.svg'),
op.join('icons', '*.png'),
op.join('io', 'artemis123', 'resources', '*.csv'),
op.join('io', 'edf', 'gdf_encodes.txt')
]},
entry_points={'console_scripts': [
'mne = mne.commands.utils:main',
]})