forked from mwong009/latent-variable-rbm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_networks.py
494 lines (426 loc) · 19.3 KB
/
neural_networks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import numpy as np
import theano
import theano.tensor as T
class LogisticRegression(object):
"""Logistic Regression Class"""
def __init__(self, input, output, n_in, n_out):
""" Initialize the parameters of the logistic regression
:type input: theano.tensor.TensorType
:param input: symbolic variable that describes the input of the
architecture (one minibatch)
:type n_in: int
:param n_in: number of input units
:type n_out: int
:param n_out: number of output units
"""
# keep track of model input
self.input = input
self.output = output
self.nullLogLikelihood = None
self.finalLoglikelihood = None
self.W = theano.shared(
value=np.zeros((n_in * n_out), dtype=theano.config.floatX),
name='W',
borrow=True
)
self.W_mat = self.W.reshape((n_in, n_out))
self.b = theano.shared(
value=np.zeros((n_out,), dtype=theano.config.floatX),
name='b',
borrow=True
)
self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W_mat) + self.b)
self.y_pred = T.argmax(self.p_y_given_x, axis=1)
self.params = [self.W, self.b]
def negative_log_likelihood(self, y):
"""negative log-likelihood of the prediction
:type y: theano.tensor.TensorType
:param y: corresponds to a vector that gives for each example the
correct label
"""
return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y])
def errors(self, y):
"""zero one loss over the size of the minibatch
:type y: theano.tensor.TensorType
:param y: corresponds to a vector that gives for each example the
correct label
"""
# check if y has same dimension of y_pred
if y.ndim != self.y_pred.ndim:
raise TypeError(
'y should have the same shape as self.y_pred',
('y', y.type, 'y_pred', self.y_pred.type)
)
# check if y is of the correct datatype
if y.dtype.startswith('int'):
# the T.neq operator returns a vector of 0s and 1s, where 1
# represents a mistake in prediction
return T.mean(T.neq(self.y_pred, y))
else:
raise NotImplementedError()
class HiddenLayer(object):
def __init__(self, rng, input, output, n_in, n_out, W=None, b=None,
activation=T.nnet.sigmoid):
""" hidden layer of a MLP
:type rng: np.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.dmatrix
:param input: a symbolic tensor of shape (n_examples, n_in)
:type n_in: int
:param n_in: dimensionality of input
:type n_out: int
:param n_out: number of hidden units
:type activation: theano.Op or function
:param activation: Non linearity to be applied in the hidden layer
"""
# keep track of model input
self.input = input
self.output = output
if W is None:
W_values = np.asarray(
rng.uniform(
low=-np.sqrt(6. / (n_in + n_out)),
high=np.sqrt(6. / (n_in + n_out)),
size=(n_in * n_out)
),
dtype=theano.config.floatX
)
if activation == T.nnet.sigmoid:
W_values *= 4
W = theano.shared(value=W_values, name='W', borrow=True)
if b is None:
b_values = np.zeros((n_out,), dtype=theano.config.floatX)
b = theano.shared(value=b_values, name='b', borrow=True)
self.W = W
self.W_mat = self.W.reshape((n_in, n_out))
self.b = b
lin_output = T.dot(input, self.W_mat) + self.b
self.output = (
lin_output if activation is None
else activation(lin_output)
)
# parameters of the model
self.params = [self.W, self.b]
class MLP(object):
"""Multi-Layer Perceptron Class
"""
def __init__(self, rng, input, n_in, n_hidden, n_out):
"""Initialize the parameters for the multilayer perceptron
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.TensorType
:param input: symbolic variable that describes the input of the
architecture (one minibatch)
:type n_in: int
:param n_in: number of input units, the dimension of the space in
which the datapoints lie
:type n_hidden: int
:param n_hidden: number of hidden units
:type n_out: int
:param n_out: number of output units, the dimension of the space in
which the labels lie
"""
# keep track of model input
self.input = input
self.params = []
self.hiddenLayer = HiddenLayer(
rng=rng,
input=input,
n_in=n_in,
n_out=n_hidden,
activation=T.nnet.sigmoid
)
self.params.extend(self.hiddenLayer.params)
# The logistic regression layer gets as input the hidden units
# of the hidden layer
self.logRegLayer = LogisticRegression(
input=self.hiddenLayer.output,
n_in=n_hidden,
n_out=n_out
)
self.params.extend(self.logRegLayer.params)
# L1 norm ; one regularization option is to enforce L1 norm to
# be small
self.L1 = (
abs(self.hiddenLayer.W).sum()
+ abs(self.logRegLayer.W).sum()
)
# square of L2 norm ; one regularization option is to enforce
# square of L2 norm to be small
self.L2_sqr = (
(self.hiddenLayer.W ** 2).sum()
+ (self.logRegLayer.W ** 2).sum()
)
# negative log likelihood of the MLP is given by the negative
# log likelihood of the output of the model, computed in the
# logistic regression layer
self.p_y_given_x = self.logRegLayer.p_y_given_x
self.y_pred = self.logRegLayer.y_pred
self.negative_log_likelihood = self.logRegLayer.negative_log_likelihood
self.errors = self.logRegLayer.errors
class RBM(object):
"""Restricted Boltzmann Machine (RBM) """
def __init__(self, input=None, n_visible=784, n_hidden=500,
W=None, hbias=None, vbias=None, numpy_rng=None, theano_rng=None):
"""
RBM constructor. Defines the parameters of the model along with
basic operations for inferring hidden from visible (and vice-versa),
as well as for performing CD updates.
:param input: None for standalone RBMs or symbolic variable if RBM is
part of a larger graph.
:param n_visible: number of visible units
:param n_hidden: number of hidden units
:param W: None for standalone RBMs or symbolic variable pointing to a
shared weight matrix in case RBM is part of a DBN network; in a DBN,
the weights are shared between RBMs and layers of a MLP
:param hbias: None for standalone RBMs or symbolic variable pointing
to a shared hidden units bias vector in case RBM is part of a
different network
:param vbias: None for standalone RBMs or a symbolic variable
pointing to a shared visible units bias
"""
self.n_visible = n_visible
self.n_hidden = n_hidden
if numpy_rng is None:
# create a number generator
numpy_rng = numpy.random.RandomState(1234)
if theano_rng is None:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
if W is None:
# W is initialized with `initial_W` which is uniformely
# sampled from -4*sqrt(6./(n_visible+n_hidden)) and
# 4*sqrt(6./(n_hidden+n_visible)) the output of uniform if
# converted using asarray to dtype theano.config.floatX so
# that the code is runable on GPU
initial_W = numpy.asarray(
numpy_rng.uniform(
low=-4 * numpy.sqrt(6. / (n_hidden + n_visible)),
high=4 * numpy.sqrt(6. / (n_hidden + n_visible)),
size=(n_visible, n_hidden)
),
dtype=theano.config.floatX
)
# theano shared variables for weights and biases
W = theano.shared(value=initial_W, name='W', borrow=True)
if hbias is None:
# create shared variable for hidden units bias
hbias = theano.shared(
value=numpy.zeros(
n_hidden,
dtype=theano.config.floatX
),
name='hbias',
borrow=True
)
if vbias is None:
# create shared variable for visible units bias
vbias = theano.shared(
value=numpy.zeros(
n_visible,
dtype=theano.config.floatX
),
name='vbias',
borrow=True
)
# initialize input layer for standalone RBM or layer0 of DBN
self.input = input
if not input:
self.input = T.matrix('input')
self.W = W
self.hbias = hbias
self.vbias = vbias
self.theano_rng = theano_rng
# **** WARNING: It is not a good idea to put things in this list
# other than shared variables created in this function.
self.params = [self.W, self.hbias, self.vbias]
# end-snippet-1
def free_energy(self, v_sample):
''' Function to compute the free energy '''
wx_b = T.dot(v_sample, self.W) + self.hbias
vbias_term = T.dot(v_sample, self.vbias)
hidden_term = T.sum(T.log(1 + T.exp(wx_b)), axis=1)
return - hidden_term - vbias_term
# def free_energy(self, v_sample):
# ''' Function to compute the free energy Gaussian visibe units'''
# wx_b = T.dot(v_sample, self.W) + self.hbias
# vbias_term = T.sum(0.5 * T.sqr(v_sample - self.vbias), axis=1)
# hidden_term = T.sum(T.log(1 + T.exp(wx_b)), axis=1)
#
# return vbias_term - hidden_term
def propup(self, vis):
'''This function propagates the visible units activation upwards to
the hidden units
Note that we return also the pre-sigmoid activation of the
layer. As it will turn out later, due to how Theano deals with
optimizations, this symbolic variable will be needed to write
down a more stable computational graph (see details in the
reconstruction cost function)
'''
pre_sigmoid_activation = T.dot(vis, self.W) + self.hbias
return [pre_sigmoid_activation, T.nnet.sigmoid(pre_sigmoid_activation)]
def sample_h_given_v(self, v0_sample):
''' This function infers state of hidden units given visible units '''
# compute the activation of the hidden units given a sample of
# the visibles
pre_sigmoid_h1, h1_mean = self.propup(v0_sample)
# get a sample of the hiddens given their activation
# Note that theano_rng.binomial returns a symbolic sample of dtype
# int64 by default. If we want to keep our computations in floatX
# for the GPU we need to specify to return the dtype floatX
h1_sample = self.theano_rng.binomial(size=h1_mean.shape,
n=1, p=h1_mean,
dtype=theano.config.floatX)
return [pre_sigmoid_h1, h1_mean, h1_sample]
def propdown(self, hid):
'''This function propagates the hidden units activation downwards to
the visible units
Note that we return also the pre_sigmoid_activation of the
layer. As it will turn out later, due to how Theano deals with
optimizations, this symbolic variable will be needed to write
down a more stable computational graph (see details in the
reconstruction cost function)
'''
pre_sigmoid_activation = T.dot(hid, self.W.T) + self.vbias
# return [pre_sigmoid_activation, T.nnet.softmax(pre_sigmoid_activation)]
return [pre_sigmoid_activation, T.nnet.sigmoid(pre_sigmoid_activation)]
def sample_v_given_h(self, h0_sample):
''' This function infers state of visible units given hidden units '''
# compute the activation of the visible given the hidden sample
pre_sigmoid_v1, v1_mean = self.propdown(h0_sample)
# get a sample of the visible given their activation
# Note that theano_rng.binomial returns a symbolic sample of dtype
# int64 by default. If we want to keep our computations in floatX
# for the GPU we need to specify to return the dtype floatX
# v1_sample = self.theano_rng.binomial(size=v1_mean.shape,
# n=1, p=v1_mean,
# dtype=theano.config.floatX)
v1_sample = v1_mean # mean-field
return [pre_sigmoid_v1, v1_mean, v1_sample]
# def sample_v_given_h(self, h0_sample):
# ''' This function infers state of visible units given hidden units '''
# # compute the activation of the visible given the hidden sample
# pre_sigmoid_v1, v1_mean = self.propdown(h0_sample)
# # get a sample of the visible given their activation
# # Note that theano_rng.binomial returns a symbolic sample of dtype
# # int64 by default. If we want to keep our computations in floatX
# # for the GPU we need to specify to return the dtype floatX
# v1_sample = v1_mean # mean-field
# return [pre_sigmoid_v1, v1_mean, v1_sample]
def gibbs_hvh(self, h0_sample):
''' This function implements one step of Gibbs sampling,
starting from the hidden state'''
pre_sigmoid_v1, v1_mean, v1_sample = self.sample_v_given_h(h0_sample)
pre_sigmoid_h1, h1_mean, h1_sample = self.sample_h_given_v(v1_sample)
return [pre_sigmoid_v1, v1_mean, v1_sample,
pre_sigmoid_h1, h1_mean, h1_sample]
def gibbs_vhv(self, v0_sample):
''' This function implements one step of Gibbs sampling,
starting from the visible state'''
pre_sigmoid_h1, h1_mean, h1_sample = self.sample_h_given_v(v0_sample)
pre_sigmoid_v1, v1_mean, v1_sample = self.sample_v_given_h(h1_sample)
return [pre_sigmoid_h1, h1_mean, h1_sample,
pre_sigmoid_v1, v1_mean, v1_sample]
def get_cost_updates(self, lr=0.1, persistent=None, k=1):
"""This functions implements one step of CD-k or PCD-k
:param lr: learning rate used to train the RBM
:param persistent: None for CD. For PCD, shared variable
containing old state of Gibbs chain. This must be a shared
variable of size (batch size, number of hidden units).
:param k: number of Gibbs steps to do in CD-k/PCD-k
Returns a proxy for the cost and the updates dictionary. The
dictionary contains the update rules for weights and biases but
also an update of the shared variable used to store the persistent
chain, if one is used.
"""
# compute positive phase
pre_sigmoid_ph, ph_mean, ph_sample = self.sample_h_given_v(self.input)
# decide how to initialize persistent chain:
# for CD, we use the newly generate hidden sample
# for PCD, we initialize from the old state of the chain
if persistent is None:
chain_start = ph_sample
else:
chain_start = persistent
# end-snippet-2
# perform actual negative phase
# in order to implement CD-k/PCD-k we need to scan over the
# function that implements one gibbs step k times.
# Read Theano tutorial on scan for more information :
# http://deeplearning.net/software/theano/library/scan.html
# the scan will return the entire Gibbs chain
(
[
pre_sigmoid_nvs,
nv_means,
nv_samples,
pre_sigmoid_nhs,
nh_means,
nh_samples
],
updates
) = theano.scan(
self.gibbs_hvh,
# the None are place holders, saying that
# chain_start is the initial state corresponding to the
# 6th output
outputs_info=[None, None, None, None, None, chain_start],
n_steps=k,
name="gibbs_hvh"
)
# start-snippet-3
# determine gradients on RBM parameters
# note that we only need the sample at the end of the chain
chain_end = nv_samples[-1]
cost = T.mean(self.free_energy(self.input)) - T.mean(
self.free_energy(chain_end))
# We must not compute the gradient through the gibbs sampling
gparams = T.grad(cost, self.params, consider_constant=[chain_end])
# constructs the update dictionary
for gparam, param in zip(gparams, self.params):
# make sure that the learning rate is of the right dtype
updates[param] = param - gparam * T.cast(
lr,
dtype=theano.config.floatX
)
if persistent:
# Note that this works only if persistent is a shared variable
updates[persistent] = nh_samples[-1]
# pseudo-likelihood is a better proxy for PCD
monitoring_cost = self.get_pseudo_likelihood_cost(updates)
else:
# reconstruction cross-entropy is a better proxy for CD
monitoring_cost = self.get_reconstruction_cost(updates,
pre_sigmoid_nvs[-1])
return monitoring_cost, updates
# end-snippet-4
def get_pseudo_likelihood_cost(self, updates):
"""Stochastic approximation to the pseudo-likelihood"""
# index of bit i in expression p(x_i | x_{\i})
bit_i_idx = theano.shared(value=0, name='bit_i_idx')
# binarize the input image by rounding to nearest integer
xi = T.round(self.input)
# calculate free energy for the given bit configuration
fe_xi = self.free_energy(xi)
# flip bit x_i of matrix xi and preserve all other bits x_{\i}
# Equivalent to xi[:,bit_i_idx] = 1-xi[:, bit_i_idx], but assigns
# the result to xi_flip, instead of working in place on xi.
xi_flip = T.set_subtensor(xi[:, bit_i_idx], 1 - xi[:, bit_i_idx])
# calculate free energy with bit flipped
fe_xi_flip = self.free_energy(xi_flip)
# equivalent to e^(-FE(x_i)) / (e^(-FE(x_i)) + e^(-FE(x_{\i})))
cost = T.mean(self.n_visible * T.log(T.nnet.sigmoid(fe_xi_flip -
fe_xi)))
# increment bit_i_idx % number as part of updates
updates[bit_i_idx] = (bit_i_idx + 1) % self.n_visible
return cost
def get_reconstruction_cost(self, updates, pre_sigmoid_nv):
"""Approximation to the reconstruction error
"""
cross_entropy = T.mean(
T.sum(
self.input * T.log(T.nnet.sigmoid(pre_sigmoid_nv)) +
(1 - self.input) * T.log(1 - T.nnet.sigmoid(pre_sigmoid_nv)),
axis=1
)
)
return cross_entropy