forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCountPairsWithXorInARange.cpp
190 lines (154 loc) · 5.87 KB
/
CountPairsWithXorInARange.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
// Source : https://leetcode.com/problems/count-pairs-with-xor-in-a-range/
// Author : Hao Chen
// Date : 2021-03-21
/*****************************************************************************************************
*
* Given a (0-indexed) integer array nums and two integers low and high, return the number of nice
* pairs.
*
* A nice pair is a pair (i, j) where 0 <= i < j < nums.length and low <= (nums[i] XOR nums[j]) <=
* high.
*
* Example 1:
*
* Input: nums = [1,4,2,7], low = 2, high = 6
* Output: 6
* Explanation: All nice pairs (i, j) are as follows:
* - (0, 1): nums[0] XOR nums[1] = 5
* - (0, 2): nums[0] XOR nums[2] = 3
* - (0, 3): nums[0] XOR nums[3] = 6
* - (1, 2): nums[1] XOR nums[2] = 6
* - (1, 3): nums[1] XOR nums[3] = 3
* - (2, 3): nums[2] XOR nums[3] = 5
*
* Example 2:
*
* Input: nums = [9,8,4,2,1], low = 5, high = 14
* Output: 8
* Explanation: All nice pairs (i, j) are as follows:
* - (0, 2): nums[0] XOR nums[2] = 13
* - (0, 3): nums[0] XOR nums[3] = 11
* - (0, 4): nums[0] XOR nums[4] = 8
* - (1, 2): nums[1] XOR nums[2] = 12
* - (1, 3): nums[1] XOR nums[3] = 10
* - (1, 4): nums[1] XOR nums[4] = 9
* - (2, 3): nums[2] XOR nums[3] = 6
* - (2, 4): nums[2] XOR nums[4] = 5
*
* Constraints:
*
* 1 <= nums.length <= 2 * 10^4
* 1 <= nums[i] <= 2 * 10^4
* 1 <= low <= high <= 2 * 10^4
******************************************************************************************************/
/*
The problem can be solved using Trie.
The idea is to iterate over the given array and for each array element,
count the number of elements present in the Trie whose bitwise XOR with
the current element is less than K and insert the binary representation
of the current element into the Trie. Finally, print the count of pairs
having bitwise XOR less than K. Follow the steps below to solve the problem:
- Create a Trie store the binary representation of each element of the given array.
- Traverse the given array, and count the number of elements present in the Trie
whose bitwise XOR with the current element is less than K and insert the binary
representation of the current element.
Let's assume, we have an array [A, B, C, D, E], all of number are 5 bits.
Find a pair is (X, E) such that X ^ E < K. (Note: X could be A,B,C,D)
Now, let's say the binary of K = 11010. E = 01010.
from the left to right,
1) Step One - the 1st bit
K = 1 1 0 1 0
E = 0 1 0 1 0
^
X = 0 x x x x -> all of number with `0` as the 1st bit need to be counted.
Notes: for the 1st bit of X, it could be `0` or `1`.
- `0`: after XOR E, the 1st bit is `0`, so, it must be smaller than `K`
- `1`: after XOR E, the 1st bit is `1`, so, we have to check the rest bits -> Step Two
2) Step Two - the 2nd bit
K = 1 1 0 1 0
E = 0 1 0 1 0
^
X = 1 1 x x x -> all of number with `1` as the 2nd bit need to be counted.
3) Step Three - the 3rd bit
K = 1 1 0 1 0
E = 0 1 0 1 0
^
X = 1 0 0 x x -> must be 0, and go to evaluate next bit
4) Step Four - the 4th bit
K = 1 1 0 1 0
E = 0 1 0 1 0
^
X = 1 1 0 1 x -> all of number with `1` as the 4th bit need to be counted.
5) Step Five - the 5th bit
K = 1 1 0 1 0
E = 0 1 0 1 0
^
X = 1 1 0 1 0 -> must be 0, and go to evaluate next bit
So, all of number will be sum of (step one, two, four)
*/
const int LEVEL = 16; // 1 <= nums[i] <= 20000
struct TrieNode {
TrieNode *child[2]; // Stores binary represention of numbers
int cnt; // Stores count of elements present in a node
TrieNode() {
child[0] = child[1] = NULL;
cnt = 0;
}
};
// Function to insert a number into Trie
void insertTrie(TrieNode *root, int n) {
// Traverse binary representation of X
for (int i = LEVEL; i >= 0; i--) {
// Stores ith bit of N
bool x = (n) & (1 << i);
// Check if an element already present in Trie having ith bit x
if(!root->child[x]) {
// Create a new node of Trie.
root->child[x] = new TrieNode();
}
// Update count of elements whose ith bit is x
root->child[x]->cnt += 1;
//Go to next level
root = root->child[x];
}
}
class Solution {
private:
// Count elements in Trie whose XOR with N less than K
int countSmallerPairs(TrieNode * root, int N, int K) {
// Stores count of elements whose XOR with N less than K
int cntPairs = 0;
// Traverse binary representation of N and K in Trie
for (int i = LEVEL; i >= 0 && root; i--) {
bool x = N & (1 << i); // Stores ith bit of N
bool y = K & (1 << i); // Stores ith bit of K
// If the ith bit of K is 0
if (y == 0 ) {
// find the number which bit is same as N
// so that they can be xored to ZERO
root = root->child[x];
continue;
}
// If the ith bit of K is 1
// If an element already present in Trie having ith bit (x)
if(root->child[x]) {
// find the number which bit is same as N
// so that they can be xored to ZERO. so it would be smaller than K
cntPairs += root->child[x]->cnt;
}
//go to another way for next bit count
root = root->child[1 - x];
}
return cntPairs;
}
public:
int countPairs(vector<int>& nums, int low, int high) {
TrieNode* root = new TrieNode();
int cnt = 0;
for (auto& num : nums) {
cnt += countSmallerPairs(root, num, high + 1) - countSmallerPairs(root, num, low);
insertTrie(root, num);
}
return cnt;
}
};