-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.sh
31 lines (28 loc) · 3.02 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Ablation 1: number of steps. No need to train block size prediction
# python main.py device 5 dataset qm9 task local_denoising diffusion.num_steps 20
# python main.py device 4 dataset qm9 task local_denoising diffusion.num_steps 70
# python main.py device 3 dataset qm9 task local_denoising diffusion.num_steps 100
# python main.py device 3 dataset qm9 task local_denoising diffusion.num_steps 10
# # Grid
# python main.py device 4 dataset grid task local_denoising
# python main.py device 5 dataset grid-batchseq task local_denoising
# Ablation 2: max hops, which controls the number of blocks and size of each blocks.
# larger max hops leads to smaller block size but increased number of blocks.
# when hops = 0, it reduces to just a single block, hence it's similar to DiGress.
# For this ablation, let's control the total number of denosing steps to be 140.
## Part 1: block_prediction
# python main.py device 0 dataset qm9 task block_prediction diffusion.max_hops 0
python main.py device 3 dataset qm9 task block_prediction diffusion.max_hops 1 &
python main.py device 4 dataset qm9 task block_prediction diffusion.max_hops 2 &
# python main.py device 3 dataset qm9 task block_prediction diffusion.max_hops 3
python main.py device 5 dataset qm9 task block_prediction diffusion.max_hops 4 &
# python main.py device 5 dataset qm9 task block_prediction diffusion.max_hops 5
## Part 2: diffusion block_prediction
# python main.py device 0 dataset qm9 task local_denoising diffusion.max_hops 0 diffusion.num_steps 140 # Number of blocks: 1, max block size: 30, max block degree: 5 | Average number of blocks in training set: 1.0
# python main.py device 1 dataset qm9 task local_denoising diffusion.max_hops 1 diffusion.num_steps 32 # Number of blocks: 8, max block size: 21, max block degree: 4 | Average number of blocks in training set: 4.316677421545986
# python main.py device 2 dataset qm9 task local_denoising diffusion.max_hops 2 diffusion.num_steps 25 # Number of blocks: 10, max block size: 21, max block degree: 4 | Average number of blocks in training set: 5.656101412851514
# python main.py device 3 dataset qm9 task local_denoising diffusion.max_hops 3 diffusion.num_steps 20 # Number of blocks: 13, max block size: 19, max block degree: 4 | Average number of blocks in training set: 7.200592650455101
# python main.py device 4 dataset qm9 task local_denoising diffusion.max_hops 4 diffusion.num_steps 18 # Number of blocks: 15, max block size: 19, max block degree: 4 | Average number of blocks in training set: 7.752029275913599
# python main.py device 5 dataset qm9 task local_denoising diffusion.max_hops 5 diffusion.num_steps 18 # Number of blocks: 15, max block size: 19, max block degree: 4 | Average number of blocks in training set: 7.838498505637821
python main.py device 4 dataset qm9 task local_denoising diffusion.max_hops 3 diffusion.num_steps 20 model.transformer_only True model.edge_hidden 80
python main.py device 5 dataset qm9 task local_denoising diffusion.max_hops 3 diffusion.num_steps 20 model.hidden_size 128 True model.edge_hidden 0