-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathadapt_tester.py
146 lines (114 loc) · 5.02 KB
/
adapt_tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
from pprint import pprint
import numpy as np
import torch
from PIL import Image
from torch.autograd import Variable
from torch.utils import data
from tqdm import tqdm
from argmyparse import add_additional_params_to_args, get_da_mcd_testing_parser
from datasets import get_dataset
from models.model_util import get_models
from transform import get_img_transform, get_lbl_transform
from util import mkdir_if_not_exist, save_dic_to_json, check_if_done, save_colorized_lbl, exec_eval, calc_entropy
parser = get_da_mcd_testing_parser()
args = parser.parse_args()
args = add_additional_params_to_args(args)
# args = add_img_shape_to_args(args)
indir, infn = os.path.split(args.trained_checkpoint)
trained_mode = indir.split(os.path.sep)[-2]
args.mode = "%s---%s-%s" % (trained_mode, args.tgt_dataset, args.split)
model_name = infn.replace(".pth", "")
if args.use_f2:
model_name += "-use_f2"
print("=> loading checkpoint '{}'".format(args.trained_checkpoint))
if not os.path.exists(args.trained_checkpoint):
raise OSError("%s does not exist!" % args.trained_checkpoint)
checkpoint = torch.load(args.trained_checkpoint)
train_args = checkpoint["args"]
args.start_epoch = checkpoint['epoch']
print ("----- train args ------")
pprint(checkpoint["args"].__dict__, indent=4)
print ("-" * 50)
print("=> loaded checkpoint '{}'".format(args.trained_checkpoint))
base_outdir = os.path.join(args.outdir, args.mode, model_name)
mkdir_if_not_exist(base_outdir)
json_fn = os.path.join(base_outdir, "param.json")
check_if_done(json_fn)
args.machine = os.uname()[1]
save_dic_to_json(args.__dict__, json_fn)
train_img_shape = tuple([int(x) for x in train_args.train_img_shape])
test_img_shape = tuple([int(x) for x in args.test_img_shape])
if "normalize_way" in train_args.__dict__.keys():
img_transform = get_img_transform(img_shape=train_img_shape,
normalize_way=train_args.normalize_way)
else:
img_transform = get_img_transform(img_shape=train_img_shape)
if "background_id" in train_args.__dict__.keys():
label_transform = get_lbl_transform(img_shape=train_img_shape, n_class=train_args.n_class,
background_id=train_args.background_id)
else:
label_transform = get_lbl_transform(img_shape=train_img_shape, n_class=train_args.n_class)
tgt_dataset = get_dataset(dataset_name=args.tgt_dataset, split=args.split, img_transform=img_transform,
label_transform=label_transform, test=True, input_ch=train_args.input_ch)
target_loader = data.DataLoader(tgt_dataset, batch_size=1, pin_memory=True)
try:
G, F1, F2 = get_models(net_name=train_args.net, res=train_args.res, input_ch=train_args.input_ch,
n_class=train_args.n_class,
method=train_args.method, is_data_parallel=train_args.is_data_parallel)
except AttributeError:
G, F1, F2 = get_models(net_name=train_args.net, res=train_args.res, input_ch=train_args.input_ch,
n_class=train_args.n_class,
method="MCD", is_data_parallel=False)
G.load_state_dict(checkpoint['g_state_dict'])
F1.load_state_dict(checkpoint['f1_state_dict'])
if args.use_f2:
F2.load_state_dict(checkpoint['f2_state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.trained_checkpoint, checkpoint['epoch']))
G.eval()
F1.eval()
F2.eval()
if torch.cuda.is_available():
G.cuda()
F1.cuda()
F2.cuda()
total_ent = 0.
for index, (imgs, _, paths) in tqdm(enumerate(target_loader)):
path = paths[0]
imgs = Variable(imgs)
if torch.cuda.is_available():
imgs = imgs.cuda()
feature = G(imgs)
outputs = F1(feature)
if args.use_f2:
outputs += F2(feature)
outputs /= 2
total_ent += calc_entropy(outputs).data.cpu().numpy()[0]
if args.saves_prob:
# Save probability tensors
prob_outdir = os.path.join(base_outdir, "prob")
mkdir_if_not_exist(prob_outdir)
prob_outfn = os.path.join(prob_outdir, path.split('/')[-1].replace('png', 'npy'))
np.save(prob_outfn, outputs[0].data.cpu().numpy())
# Save predicted pixel labels(pngs)
if train_args.add_bg_loss:
pred = outputs[0, :args.n_class].data.max(0)[1].cpu()
else:
pred = outputs[0, :args.n_class - 1].data.max(0)[1].cpu()
img = Image.fromarray(np.uint8(pred.numpy()))
img = img.resize(test_img_shape, Image.NEAREST)
label_outdir = os.path.join(base_outdir, "label")
mkdir_if_not_exist(label_outdir)
label_fn = os.path.join(label_outdir, path.split('/')[-1])
img.save(label_fn)
# Save visualized predicted pixel labels(pngs)
vis_outdir = os.path.join(base_outdir, "vis")
mkdir_if_not_exist(vis_outdir)
vis_fn = os.path.join(vis_outdir, path.split('/')[-1])
save_colorized_lbl(img, vis_fn, args.tgt_dataset)
exec_eval(args.tgt_dataset, label_outdir)
ave_ent = total_ent / len(target_loader)
print ("average entropy: %s" % ave_ent)
with open(os.path.join(base_outdir, "ave_ent_%s.txt" % ave_ent), "w") as f:
f.write(str(ave_ent))