-
Notifications
You must be signed in to change notification settings - Fork 3
/
finetune_adapt_mfnet_trainer.py
255 lines (199 loc) · 9.6 KB
/
finetune_adapt_mfnet_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from __future__ import division
import os
import torch
import tqdm
from tensorboard_logger import configure, log_value
from torch.autograd import Variable
from torch.utils import data
from argmyparse import add_additional_params_to_args, get_da_mcd_training_parser
from datasets import ConcatDataset, get_dataset, check_src_tgt_ok
from joint_transforms import get_joint_transform
from loss import CrossEntropyLoss2d, get_prob_distance_criterion, ProbCrossEntropyLoss2d
from models.model_util import fix_batchnorm_when_training, get_models, get_optimizer, fix_dropout_when_training
from transform import get_img_transform, \
get_lbl_transform
from util import mkdir_if_not_exist, save_dic_to_json, check_if_done, save_checkpoint, emphasize_str, \
get_class_weight_from_file, adjust_learning_rate
parser = get_da_mcd_training_parser()
parser.add_argument("--method_detail", type=str, default="MFNet-GateFusion",
choices=["MFNet-AddFusion", "MFNet-ConcatFusion", "MFNet-ConcatConvFusion", "MFNet-GateFusion",
"MFNet-ScoreAddFusion", "MFNet-ScoreConcatConvFusion", "MFNet-ScoreGateFusion"])
parser.add_argument("checkpoint", type=str, metavar="PTH.TAR",
default=None)
parser.add_argument('extra_checkpoint', type=str, metavar="PTH.TAR", default=None)
args = parser.parse_args()
args = add_additional_params_to_args(args)
assert args.input_ch in [4, 6]
detailed_method = args.method + "-" + args.method_detail
print ("method: %s" % detailed_method)
check_src_tgt_ok(args.src_dataset, args.tgt_dataset)
print("=> loading checkpoint '{}'".format(args.checkpoint))
if not os.path.exists(args.checkpoint):
raise OSError("%s does not exist!" % args.checkpoint)
indir, infn = os.path.split(args.checkpoint)
def get_model_name_from_path(path):
return path.split(os.path.sep)[-1].replace(".tar", "")
args.savename = get_model_name_from_path(args.checkpoint) + "AND" + get_model_name_from_path(args.extra_checkpoint)
print ("savename is %s " % (args.savename))
checkpoint = torch.load(args.checkpoint)
model_g_3ch, model_g_1ch, model_f1, model_f2 = get_models(net_name=args.net, res=args.res, input_ch=args.input_ch,
n_class=args.n_class, method=detailed_method,
is_data_parallel=args.is_data_parallel)
optimizer_g = get_optimizer(list(model_g_3ch.parameters()) + list(model_g_1ch.parameters()), lr=args.lr,
opt=args.opt,
momentum=args.momentum,
weight_decay=args.weight_decay)
optimizer_f = get_optimizer(list(model_f1.parameters()) + list(model_f2.parameters()), lr=args.lr, opt=args.opt,
momentum=args.momentum, weight_decay=args.weight_decay)
model_g_3ch.load_state_dict(checkpoint['g_state_dict'])
print("=> loading checkpoint '{}'".format(args.extra_checkpoint))
model_g_1ch.load_state_dict(torch.load(args.extra_checkpoint)['g_state_dict'])
if args.uses_one_classifier:
model_f2 = model_f1
print("=> loaded checkpoint '{}'".format(args.checkpoint))
if args.uses_one_classifier:
print ("f1 and f2 are same!")
model_f2 = model_f1
mode = "%s-%s2%s-%s_%sch_Finetune_MFNet" % (
args.src_dataset, args.src_split, args.tgt_dataset, args.tgt_split, args.input_ch)
if args.net in ["fcn", "psp"]:
model_name = "%s-%s-%s-res%s" % (detailed_method, args.savename, args.net, args.res)
else:
model_name = "%s-%s-%s" % (detailed_method, args.savename, args.net)
outdir = os.path.join(args.base_outdir, mode)
# Create Model Dir
pth_dir = os.path.join(outdir, "pth")
mkdir_if_not_exist(pth_dir)
# Create Model Dir and Set TF-Logger
tflog_dir = os.path.join(outdir, "tflog", model_name)
mkdir_if_not_exist(tflog_dir)
configure(tflog_dir, flush_secs=5)
# Save param dic
json_fn = os.path.join(outdir, "param-%s-finetune_MFNet.json" % model_name)
check_if_done(json_fn)
save_dic_to_json(args.__dict__, json_fn)
train_img_shape = tuple([int(x) for x in args.train_img_shape])
use_crop = True if args.crop_size > 0 else False
joint_transform = get_joint_transform(crop_size=args.crop_size, rotate_angle=args.rotate_angle) if use_crop else None
img_transform = get_img_transform(img_shape=train_img_shape, normalize_way=args.normalize_way, use_crop=use_crop)
label_transform = get_lbl_transform(img_shape=train_img_shape, n_class=args.n_class, background_id=args.background_id,
use_crop=use_crop)
src_dataset = get_dataset(dataset_name=args.src_dataset, split=args.src_split, img_transform=img_transform,
label_transform=label_transform, test=False, input_ch=args.input_ch)
tgt_dataset = get_dataset(dataset_name=args.tgt_dataset, split=args.tgt_split, img_transform=img_transform,
label_transform=label_transform, test=False, input_ch=args.input_ch)
train_loader = torch.utils.data.DataLoader(
ConcatDataset(
src_dataset,
tgt_dataset
),
batch_size=args.batch_size, shuffle=True,
pin_memory=True)
weight = get_class_weight_from_file(n_class=args.n_class, weight_filename=args.loss_weights_file,
add_bg_loss=args.add_bg_loss)
if torch.cuda.is_available():
model_g_3ch.cuda()
model_g_1ch.cuda()
model_f1.cuda()
model_f2.cuda()
weight = weight.cuda()
criterion = CrossEntropyLoss2d(weight) if "Gate" not in args.method_detail else ProbCrossEntropyLoss2d(weight)
criterion_d = get_prob_distance_criterion(args.d_loss)
model_g_3ch.train()
model_g_1ch.train()
model_f1.train()
model_f2.train()
if args.no_dropout:
print ("NO DROPOUT")
fix_dropout_when_training(model_g_3ch)
fix_dropout_when_training(model_g_1ch)
fix_dropout_when_training(model_f1)
fix_dropout_when_training(model_f2)
if args.fix_bn:
print (emphasize_str("BN layers are NOT trained!"))
fix_batchnorm_when_training(model_g_3ch)
fix_batchnorm_when_training(model_g_1ch)
fix_batchnorm_when_training(model_f1)
fix_batchnorm_when_training(model_f2)
for epoch in range(args.epochs):
d_loss_per_epoch = 0
c_loss_per_epoch = 0
for ind, (source, target) in tqdm.tqdm(enumerate(train_loader)):
src_imgs, src_lbls = Variable(source[0]), Variable(source[1])
tgt_imgs = Variable(target[0])
if torch.cuda.is_available():
src_imgs, src_lbls, tgt_imgs = src_imgs.cuda(), src_lbls.cuda(), tgt_imgs.cuda()
# update generator and classifiers by source samples
optimizer_g.zero_grad()
optimizer_f.zero_grad()
loss = 0
loss_weight = [1.0, 1.0]
g_rgb_outdic = model_g_3ch(src_imgs[:, :3, :, :])
g_ir_outdic = model_g_1ch(src_imgs[:, 3:, :, :])
outputs1 = model_f1(g_rgb_outdic, g_ir_outdic)
outputs2 = model_f2(g_rgb_outdic, g_ir_outdic)
loss += criterion(outputs1, src_lbls)
loss += criterion(outputs2, src_lbls)
loss.backward()
c_loss = loss.data[0]
c_loss_per_epoch += c_loss
optimizer_g.step()
optimizer_f.step()
# update for classifiers
optimizer_g.zero_grad()
optimizer_f.zero_grad()
g_rgb_outdic = model_g_3ch(src_imgs[:, :3, :, :])
g_ir_outdic = model_g_1ch(src_imgs[:, 3:, :, :])
outputs1 = model_f1(g_rgb_outdic, g_ir_outdic)
outputs2 = model_f2(g_rgb_outdic, g_ir_outdic)
loss = 0
loss += criterion(outputs1, src_lbls)
loss += criterion(outputs2, src_lbls)
# accumulate loss
g_rgb_outdic = model_g_3ch(tgt_imgs[:, :3, :, :])
g_ir_outdic = model_g_1ch(tgt_imgs[:, 3:, :, :])
outputs1 = model_f1(g_rgb_outdic, g_ir_outdic)
outputs2 = model_f2(g_rgb_outdic, g_ir_outdic)
loss -= criterion_d(outputs1, outputs2)
loss.backward()
optimizer_f.step()
optimizer_f.zero_grad()
d_loss = 0.0
# update generator by discrepancy
for i in xrange(args.num_k):
optimizer_g.zero_grad()
loss = 0
g_rgb_outdic = model_g_3ch(tgt_imgs[:, :3, :, :])
g_ir_outdic = model_g_1ch(tgt_imgs[:, 3:, :, :])
outputs1 = model_f1(g_rgb_outdic, g_ir_outdic)
outputs2 = model_f2(g_rgb_outdic, g_ir_outdic)
loss += criterion_d(outputs1, outputs2)
loss.backward()
optimizer_g.step()
d_loss += loss.data[0] / args.num_k
d_loss_per_epoch += d_loss
if ind % 100 == 0:
print("iter [%d] DLoss: %.4f CLoss: %.4f" % (ind, d_loss, c_loss))
if ind > args.max_iter:
break
print("Epoch [%d] DLoss: %.4f CLoss: %.4f" % (epoch, d_loss_per_epoch, c_loss_per_epoch))
log_value('c_loss', c_loss_per_epoch, epoch)
log_value('d_loss', d_loss_per_epoch, epoch)
log_value('lr', args.lr, epoch)
if args.adjust_lr:
args.lr = adjust_learning_rate(optimizer_g, args.lr, args.weight_decay, epoch, args.epochs)
args.lr = adjust_learning_rate(optimizer_f, args.lr, args.weight_decay, epoch, args.epochs)
checkpoint_fn = os.path.join(pth_dir, "%s-%s.pth.tar" % (model_name, epoch + 1))
args.start_epoch = epoch + 1
save_dic = {
'epoch': epoch + 1,
'args': args,
'g_3ch_state_dict': model_g_3ch.state_dict(),
'g_1ch_state_dict': model_g_1ch.state_dict(),
'f1_state_dict': model_f1.state_dict(),
'optimizer_g': optimizer_g.state_dict(),
'optimizer_f': optimizer_f.state_dict(),
}
if not args.uses_one_classifier:
save_dic['f2_state_dict'] = model_f2.state_dict()
save_checkpoint(save_dic, is_best=False, filename=checkpoint_fn)