使用有SimpleServing功能的PaddleNLP版本(或者最新的develop版本)
pip install paddlenlp >= 2.5.0
paddlenlp server server:app --workers 1 --host 0.0.0.0 --port 8190
python client.py
# Default schema
schema = ["病情诊断", "治疗方案", "病因分析", "指标解读", "就医建议", "疾病表述", "后果表述", "注意事项", "功效作用", "医疗费用", "其他"]
# Default task_path
utc = Taskflow("zero_shot_text_classification", task_path="../../checkpoint/model_best/plm", schema=schema)
PaddleNLP SimpleServing 支持多卡负载均衡预测,主要在服务化注册的时候,注册两个Taskflow的task即可,下面是示例代码
utc1 = Taskflow("zero_shot_text_classification", task_path="../../checkpoint/model_best/plm", schema=schema)
utc2 = Taskflow("zero_shot_text_classification", task_path="../../checkpoint/model_best/plm", schema=schema)
service.register_taskflow("taskflow/utc", [utc1, utc2])
>>> from paddlenlp import Taskflow
>>> schema = ["病情诊断", "治疗方案", "病因分析", "指标解读", "就医建议", "疾病表述", "后果表述", "注意事项", "功效作用", "医疗费用", "其他"]
>>> utc = Taskflow("zero_shot_text_classification",
schema=schema,
model="utc-large",
max_seq_len=512,
batch_size=1,
pred_threshold=0.5,
precision="fp32")
schema
:定义任务标签候选集合。model
:选择任务使用的模型,默认为utc-large
, 可选有utc-large
。max_seq_len
:最长输入长度,包括所有标签的长度,默认为512。batch_size
:批处理大小,请结合机器情况进行调整,默认为1。pred_threshold
:模型对标签预测的概率在0~1之间,返回结果去掉小于这个阈值的结果,默认为0.5。precision
:选择模型精度,默认为fp32
,可选有fp16
和fp32
。fp16
推理速度更快。如果选择fp16
,请先确保机器正确安装NVIDIA相关驱动和基础软件,确保CUDA>=11.2,cuDNN>=8.1.1,初次使用需按照提示安装相关依赖。其次,需要确保GPU设备的CUDA计算能力(CUDA Compute Capability)大于7.0,典型的设备包括V100、T4、A10、A100、GTX 20系列和30系列显卡等。更多关于CUDA Compute Capability和精度支持情况请参考NVIDIA文档:GPU硬件与支持精度对照表。
# Changed to input texts you wanted
texts = ["中性粒细胞比率偏低"]