-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathmain.py
109 lines (91 loc) · 4.51 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import argparse
import os
import os.path
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import model as m
from dataset import FashionAI
# Training settings
parser = argparse.ArgumentParser(description='FashionAI')
parser.add_argument('--model', type=str, default='resnet34', metavar='M',
help='model name')
parser.add_argument('--attribute', type=str, default='coat_length_labels', metavar='A',
help='fashion attribute (default: coat_length_labels)')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--test-batch-size', type=int, default=10, metavar='N',
help='input batch size for testing (default: 10)')
parser.add_argument('--epochs', type=int, default=50, metavar='N',
help='number of epochs to train (default: 50)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0, metavar='M',
help='SGD momentum (default: 0)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--ci', action='store_true', default=False,
help='running CI')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
trainset = FashionAI('./', attribute=args.attribute, split=0.8, ci=args.ci, data_type='train', reset=False)
testset = FashionAI('./', attribute=args.attribute, split=0.8, ci=args.ci, data_type='test', reset=trainset.reset)
train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = DataLoader(testset, batch_size=args.test_batch_size, shuffle=True, **kwargs)
if args.ci:
args.model = 'ci'
model = m.create_model(args.model, FashionAI.AttrKey[args.attribute])
save_folder = os.path.join(os.path.expanduser('.'), 'save', args.attribute, args.model)
if os.path.exists(os.path.join(save_folder, args.model + '_checkpoint.pth')):
start_epoch = torch.load(os.path.join(save_folder, args.model + '_checkpoint.pth'))
model.load_state_dict(torch.load(os.path.join(save_folder, args.model + '_' + str(start_epoch) + '.pth')))
else:
start_epoch = 0
if args.cuda:
model.cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data.item()))
if not os.path.exists(save_folder):
os.makedirs(save_folder)
torch.save(model.state_dict(), os.path.join(save_folder, args.model + '_' + str(epoch) + '.pth'))
torch.save(epoch, os.path.join(save_folder, args.model + '_checkpoint.pth'))
def test():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
test_loss += F.nll_loss(output, target, size_average=False).data.item() # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
for epoch in range(start_epoch + 1, args.epochs + 1):
train(epoch)
test()