-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgobang_play.py
74 lines (52 loc) · 2.06 KB
/
gobang_play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch
import agent
import environment
from gobang_train import robot_step
BOARD_SIZE = 8
WIN_SIZE = 5
MODULE_SAVE_PATH = "./xxx.pth"
def play(board_size: int, win_size: int, module_path: str):
robot = agent.gobang.robot(device=torch.device('cpu'), epsilon=0, board_size=board_size,
module_save_path=module_path)
robot.module.eval()
env = environment.gobang.game(board_size=board_size, win_size=win_size)
with torch.no_grad():
while True:
done = robot_step(env.A, robot, env, is_train=False, show_result=True, board_size=BOARD_SIZE)
if done != 0:
break
env.display()
while True:
a = int(input("r->"))
b = int(input("c->"))
if env.board[a][b] != 0:
continue
env.step(env.B, (a, b))
if env.pre_action is not None:
break
if env.check() != 0:
break
env.display()
def play_with_dm(board_size: int, win_size: int):
env = environment.gobang.game(board_size=board_size, win_size=win_size)
robot = agent.gobang_dm.dm_robot(env.A, env, display_reward=True)
with torch.no_grad():
while True:
done = robot_step(env.A, robot, env, is_train=False, show_result=True, board_size=BOARD_SIZE) # 模型执黑下
if done != 0: # 游戏结束
break
env.display()
while True: # 输入要下的棋子位置
a = int(input("r->"))
b = int(input("c->"))
if env.board[a][b] != 0: # 输入不合法,重新输入
continue
env.step(env.B, (a, b)) # 输入成功
if env.pre_action is not None:
break
if env.check() != 0: # 检查游戏是否结束
break
env.display()
if __name__ == '__main__':
# play(BOARD_SIZE, WIN_SIZE, MODULE_SAVE_PATH)
play_with_dm(BOARD_SIZE, WIN_SIZE)