-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
89 lines (78 loc) · 4.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright 2020 Dakewe Biotech Corporation. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import argparse
import logging
import wgangp_pytorch.models as models
from wgangp_pytorch.utils import create_folder
from trainer import Trainer
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
logger = logging.getLogger(__name__)
logging.basicConfig(format="[ %(levelname)s ] %(message)s", level=logging.DEBUG)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="An implementation of WassersteinGAN-GP algorithm using PyTorch framework.")
parser.add_argument("data", metavar="DIR",
help="path to dataset")
parser.add_argument("--dataset", type=str, required=True,
help="| lsun |.")
parser.add_argument("-a", "--arch", metavar="ARCH", default="lsun",
choices=model_names,
help="model architecture: " +
" | ".join(model_names) +
" (default: lsun)")
parser.add_argument("-j", "--workers", default=8, type=int, metavar="N",
help="Number of data loading workers. (default:8)")
parser.add_argument("--start-iter", default=0, type=int, metavar="N",
help="manual iter number (useful on restarts)")
parser.add_argument("--iters", default=100000, type=int, metavar="N",
help="The number of iterations is needed in the training of model. (default: 100000)")
parser.add_argument("-b", "--batch-size", default=64, type=int, metavar="N",
help="mini-batch size (default: 64), this is the total "
"batch size of all GPUs on the current node when "
"using Data Parallel or Distributed Data Parallel.")
parser.add_argument("--lr", type=float, default=0.0002,
help="Learning rate. (default:0.0002)")
parser.add_argument("--n_critic", type=int, default=5,
help="Number of training steps for discriminator per iter. (Default: 5).")
parser.add_argument("--image-size", type=int, default=64,
help="The height / width of the input image to network. (default: 64).")
parser.add_argument("--classes", default="church_outdoor",
help="comma separated list of classes for the lsun data set. (default: ``church_outdoor``).")
parser.add_argument("--pretrained", dest="pretrained", action="store_true",
help="Use pre-trained model.")
parser.add_argument("--netD", default="", type=str, metavar="PATH",
help="Path to latest discriminator checkpoint. (default: ````).")
parser.add_argument("--netG", default="", type=str, metavar="PATH",
help="Path to latest generator checkpoint. (default: ````).")
parser.add_argument("--manualSeed", type=int, default=1111,
help="Seed for initializing training. (default:1111)")
parser.add_argument("--device", default="0",
help="device id i.e. `0` or `0,1` or `cpu`. (default: ``0``).")
args = parser.parse_args()
print("##################################################\n")
print("Run Training Engine.\n")
print(args)
create_folder("output")
create_folder("weights")
logger.info("TrainingEngine:")
print("\tAPI version .......... 0.1.0")
print("\tBuild ................ 2020.12.18-1454-f636e462")
logger.info("Creating Training Engine")
trainer = Trainer(args)
logger.info("Staring training model")
trainer.run()
print("##################################################\n")
logger.info("All training has been completed successfully.\n")