Skip to content

Latest commit

 

History

History
47 lines (25 loc) · 1.11 KB

README.md

File metadata and controls

47 lines (25 loc) · 1.11 KB

MVA-DDI

MVA-DDI: Interpretable attention network with multi-view learning for drug-drug interaction prediction
Overview of MVA-DDI framework

File description

  • Data: Pre-split training set, test set, and validation set.
  • Encoder/deal_data.py: SMILES data preprocessing.
  • ESPF: Encoding dictionary and corresponding fields.
  • Model/MVA.py: Model code.
  • log.py: Evaluation metrics calculation.
  • losses.py: Implementation of cross-entropy loss function.
  • Result_vis.py: Visualization of loss and roc results.
  • train.py: Main function for model training and testing.
  • violin.py: Drawing violin analysis plot.

Requirement

  • Python == 3.7
  • Pytorch
  • RDKit
  • scikit-learn
  • subword_nmt

Usage

python train.py

Dataset

Our dataset comes from DrugBank (V5.1.9) and ChEMBL (V32). We provide the preprocessed dataset, but you can also directly download the original DrugBank dataset V5.1.9 and ChEMBL dataset V32