-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_net.py
96 lines (83 loc) · 3.66 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Copyright (c) 2021-2022, NVIDIA Corporation & Affiliates. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, visit
# https://github.com/NVlabs/FreeSOLO/blob/main/LICENSE
# -------------------------------------------------------------------------
# MIT License
#
# Copyright (c) 2021 Facebook, Inc. and its affiliates.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Modified by Xinlong Wang
# -------------------------------------------------------------------------
import torch
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import default_argument_parser, default_setup, launch
from freesolo import add_solo_config
from freesolo.engine.my_trainer import My_BaselineTrainer
# hacky way to register
import freesolo.data.datasets.builtin
from freesolo.modeling.solov2 import My_PseudoSOLOv2
from freesolo import my_eval_cocoapi
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg() # detectron2\config\defaults.py
add_solo_config(cfg) # MODEL.SOLOV2
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
Trainer = My_BaselineTrainer
# print('\n******************************')
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
# resume_or_lord(path, whether_resume)
)
res = Trainer.test(cfg, model)
my_eval_cocoapi.eval_my_coco(cfg)
return res
trainer = Trainer(cfg)
# trainer.checkpointer.save("last_epoch_ckpt", )
trainer.resume_or_load(resume=args.resume) # false
return trainer.train()
# 在每轮训练当中,Trainer 都会建立一个EventStorage 的对象 self.storage , 并且通过一系列的方法,可以使得在run_step
# 的每个细节中,都可以访问到这个对象,并将数据记录在这个对象当中,并且在after_step方法当中获取记录的这些信息,
# 用于完成日志的记录和其他相关的操作。可以简单的认为EventStorage 就是 run_step 和after_step 之间的通信方式
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)