-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGradientDescent.R
151 lines (130 loc) · 4.46 KB
/
GradientDescent.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#title: GradientDescent
#help: First-order local optimization algorithm<br/>http://en.wikipedia.org/wiki/Gradient_descent
#type: optimization
#author: yann.richet@irsn.fr
#require:
#options: nmax='100',delta='0.1',epsilon='0.01',target='-Inf'
#options.help: nmax=Maximum number of iterations,delta=initial step (in Y) to descend,epsilon=step (in X) to caculate finite differences derivatives,target=Shortcut to terminate if min<target
GradientDescent <- function(options) {
options$nmax <- as.integer(options$nmax)
options$delta <- as.numeric(options$delta)
options$epsilon <- as.numeric(options$epsilon)
options$target <- as.numeric(options$target)
gradientdescent = new.env()
gradientdescent$i = 0
lapply(names(options), function(x)
assign(x, options[[x]], gradientdescent))
return(gradientdescent)
}
getInitialDesign <- function(algorithm, d) {
algorithm$i = 0
return(askfinitedifferences(rep(0.5,d),algorithm$epsilon));
}
getNextDesign <- function(algorithm, X, Y) {
if (algorithm$i>algorithm$nmax) return();
if (min(Y[,1])<algorithm$target) return();
d = ncol(X)
n = nrow(X)
prevXn = as.matrix(X[(n-d):n,])
prevYn = as.matrix(Y[(n-d):n,1])
if (algorithm$i > 1)
if (Y[n-d,1] > Y[n-d-d,1]) {
algorithm$delta <- algorithm$delta / 2
prevXn = as.matrix(X[(n-d-d-1):(n-d-1),])
prevYn = as.matrix(Y[(n-d-d-1):(n-d-1),1])
}
grad = gradient(prevXn,prevYn)
grad = grad / sqrt(sum(grad * grad))
xnext = t(prevXn[1,] - (grad * algorithm$delta))
for (t in 1:d) {
if (xnext[t] > 1.0) {
xnext[t] = 1.0;
}
if (xnext[t] < 0.0) {
xnext[t] = 0.0;
}
}
algorithm$i <- algorithm$i+1
return(askfinitedifferences(xnext,algorithm$epsilon))
}
displayResults <- function(algorithm, X, Y) {
m = min(Y)
m.ix=which(Y==m)
x = as.matrix(X)[m.ix[1],]
resolution <- 600
d = dim(X)[2]
if(d>1) {
algorithm$files <- paste("pairs_",algorithm$i-1,".png",sep="")
png(file=algorithm$files,bg="transparent",height=resolution,width = resolution)
red = (as.matrix(Y)-min(Y))/(max(Y)-min(Y))
pairs(X,col=rgb(r=red,g=0,b=1-red),Y=Y[[1]],d=d,panel=panel.vec)
dev.off()
} else {
algorithm$files <- paste("plot_",algorithm$i-1,".png",sep="")
png(file=algorithm$files,bg="transparent",height=resolution,width = resolution)
red = (as.matrix(Y)-min(Y))/(max(Y)-min(Y))
plot(x=X[,1],y=Y[,1],xlab=names(X),ylab=names(Y),col=rgb(r=red,g=0,b=1-red))
dev.off()
}
html=paste(sep="<br/>",paste("<HTML name='minimum'>minimum is ",m),paste(sep="","found at ",paste(collapse="= ",capture.output(x)),"<br/><img src='",algorithm$files,"' width='",resolution,"' height='",resolution,"'/></HTML>"))
plotmin=paste("<Plot1D name='min'>",m,"</Plot1D>")
if (d == 1) {
plotx=paste("<Plot1D name='argmin'>",paste(x),"</Plot1D>")
} else if (d == 2) {
plotx=paste("<Plot2D name='argmin'>[",paste(collapse=",",x),"]</Plot2D>")
} else {
plotx=paste("<PlotnD name='argmin'>[",paste(collapse=",",x),"]</PlotnD>")
}
return(paste(html,plotmin,plotx))
}
askfinitedifferences <- function(x,epsilon) {
xd <- as.array(x);
for (i in 1:length(x)) {
xdi <- as.array(x);
if (xdi[i] + epsilon > 1.0) {
xdi[i] <- xdi[i] - epsilon;
} else {
xdi[i] <- xdi[i] + epsilon;
}
xd <- rbind(xd,xdi,deparse.level = 0)
}
xd
}
displayResultsTmp <- function(g,X,Y) {
displayResults(g,X,Y)
}
gradient <- function(xd,yd) {
d = ncol(xd)
grad = rep(0,d)
for (i in 1:d) {
grad[i] = (yd[i+1] - yd[1]) / (xd[i+1,i] - xd[1,i])
}
grad
}
panel.vec <- function(x, y , col, Y, d, ...) {
#points(x,y,col=col)
for (i in 1:(length(x)/(d+1))) {
n0 = 1+(i-1)*(d+1)
x0 = x[n0]
y0 = y[n0]
for (j in 1:d) {
if (x[n0+j] != x0) {
dx = (Y[n0]-Y[n0+j])/(max(Y)-min(Y))
#break;
}
}
for (j in 1:d) {
if (y[n0+j] != y0) {
dy = (Y[n0]-Y[n0+j])/(max(Y)-min(Y))
#break;
}
}
points(x=x0,y=y0,col=col[n0],pch=20)
lines(x=c(x0,x0+dx),y=c(y0,y0+dy),col=col[n0])
if (exists("x0p")) {
lines(x=c(x0p,x0),y=c(y0p,y0),col=col[n0],lty=3)
}
x0p=x0
y0p=y0
}
}