-
Notifications
You must be signed in to change notification settings - Fork 20
/
r50_nuimg_704x256_8f_pano.py
78 lines (68 loc) · 2.74 KB
/
r50_nuimg_704x256_8f_pano.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
_base_ = ['./r50_nuimg_704x256_8f.py']
occ_gt_root = 'data/nuscenes/occ3d_panoptic'
# For nuScenes we usually do 10-class detection
det_class_names = [
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
]
occ_class_names = [
'others', 'barrier', 'bicycle', 'bus', 'car', 'construction_vehicle',
'motorcycle', 'pedestrian', 'traffic_cone', 'trailer', 'truck',
'driveable_surface', 'other_flat', 'sidewalk',
'terrain', 'manmade', 'vegetation', 'free'
]
_num_frames_ = 8
model = dict(
pts_bbox_head=dict(
panoptic=True
)
)
ida_aug_conf = {
'resize_lim': (0.38, 0.55),
'final_dim': (256, 704),
'bot_pct_lim': (0.0, 0.0),
'rot_lim': (0.0, 0.0),
'H': 900, 'W': 1600,
'rand_flip': True,
}
bda_aug_conf = dict(
rot_lim=(-22.5, 22.5),
scale_lim=(1., 1.),
flip_dx_ratio=0.5,
flip_dy_ratio=0.5
)
train_pipeline = [
dict(type='LoadMultiViewImageFromFiles', to_float32=False, color_type='color'),
dict(type='LoadMultiViewImageFromMultiSweeps', sweeps_num=_num_frames_ - 1),
dict(type='BEVAug', bda_aug_conf=bda_aug_conf, classes=det_class_names, is_train=True),
dict(type='LoadOccGTFromFile', num_classes=len(occ_class_names), inst_class_ids=[2, 3, 4, 5, 6, 7, 9, 10]),
dict(type='RandomTransformImage', ida_aug_conf=ida_aug_conf, training=True),
dict(type='DefaultFormatBundle3D', class_names=det_class_names),
dict(type='Collect3D', keys=['img', 'voxel_semantics', 'voxel_instances', 'instance_class_ids'], # other keys: 'mask_camera'
meta_keys=('filename', 'ori_shape', 'img_shape', 'pad_shape', 'lidar2img', 'img_timestamp', 'ego2lidar'))
]
test_pipeline = [
dict(type='LoadMultiViewImageFromFiles', to_float32=False, color_type='color'),
dict(type='LoadMultiViewImageFromMultiSweeps', sweeps_num=_num_frames_ - 1, test_mode=True),
dict(type='BEVAug', bda_aug_conf=bda_aug_conf, classes=det_class_names, is_train=False),
dict(type='LoadOccGTFromFile', num_classes=len(occ_class_names), inst_class_ids=[2, 3, 4, 5, 6, 7, 9, 10]),
dict(type='RandomTransformImage', ida_aug_conf=ida_aug_conf, training=False),
dict(type='DefaultFormatBundle3D', class_names=det_class_names),
dict(type='Collect3D', keys=['img', 'voxel_semantics', 'voxel_instances', 'instance_class_ids'],
meta_keys=('filename', 'ori_shape', 'img_shape', 'pad_shape', 'lidar2img', 'img_timestamp', 'ego2lidar'))
]
data = dict(
workers_per_gpu=8,
train=dict(
pipeline=train_pipeline,
occ_gt_root=occ_gt_root
),
val=dict(
pipeline=test_pipeline,
occ_gt_root=occ_gt_root
),
test=dict(
pipeline=test_pipeline,
occ_gt_root=occ_gt_root
),
)