forked from charlie-foxtrot/RTLSDR-Airband
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrtl_airband.cpp
910 lines (843 loc) · 26.9 KB
/
rtl_airband.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
/*
* RTLSDR AM/NFM demodulator, mixer, streamer and recorder
*
* Copyright (c) 2014 Wong Man Hang <microtony@gmail.com>
* Copyright (c) 2015-2016 Tomasz Lemiech <szpajder@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#if defined USE_BCM_VC && !defined __arm__
#error Broadcom VideoCore support can only be enabled on ARM builds
#endif
// From this point we may safely assume that USE_BCM_VC implies __arm__
#if defined (__arm__) || defined (__aarch64__)
#ifdef USE_BCM_VC
#include "hello_fft/mailbox.h"
#include "hello_fft/gpu_fft.h"
#else
#include <fftw3.h>
#endif
#else /* x86 */
#include <xmmintrin.h>
#include <fftw3.h>
#endif /* x86 */
#include <unistd.h>
#include <pthread.h>
#include <syslog.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <fcntl.h>
#include <sys/wait.h>
#include <algorithm>
#include <csignal>
#include <cstdarg>
#include <cerrno>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <libconfig.h++>
#include <ogg/ogg.h>
#include <vorbis/vorbisenc.h>
#include <shout/shout.h>
#include <lame/lame.h>
#include <rtl-sdr.h>
#include "rtl_airband.h"
using namespace std;
using namespace libconfig;
device_t* devices;
mixer_t* mixers;
int device_count, mixer_count;
volatile int device_opened = 0;
int rtlsdr_buffers = 10;
int foreground = 0, do_syslog = 1, shout_metadata_delay = 3;
volatile int do_exit = 0;
bool use_localtime = false;
#ifdef NFM
float alpha = exp(-1.0f/(WAVE_RATE * 2e-4));
enum fm_demod_algo {
FM_FAST_ATAN2,
FM_QUADRI_DEMOD
};
enum fm_demod_algo fm_demod = FM_FAST_ATAN2;
#endif
#if DEBUG
char *debug_path;
#endif
pthread_cond_t mp3_cond = PTHREAD_COND_INITIALIZER;
pthread_mutex_t mp3_mutex = PTHREAD_MUTEX_INITIALIZER;
void rtlsdr_callback(unsigned char *buf, uint32_t len, void *ctx) {
if(do_exit) return;
device_t *dev = (device_t*)ctx;
pthread_mutex_lock(&dev->buffer_lock);
memcpy(dev->buffer + dev->bufe, buf, len);
if (dev->bufe == 0) {
memcpy(dev->buffer + BUF_SIZE, buf, FFT_SIZE * 2);
}
dev->bufe = dev->bufe + len;
if (dev->bufe == BUF_SIZE) dev->bufe = 0;
pthread_mutex_unlock(&dev->buffer_lock);
}
void sighandler(int sig) {
log(LOG_NOTICE, "Got signal %d, exiting\n", sig);
do_exit = 1;
}
void* rtlsdr_exec(void* params) {
int r;
device_t *dev = (device_t*)params;
dev->rtlsdr = NULL;
rtlsdr_open(&dev->rtlsdr, dev->device);
if (NULL == dev->rtlsdr) {
log(LOG_ERR, "Failed to open rtlsdr device #%d.\n", dev->device);
error();
return NULL;
}
r = rtlsdr_set_sample_rate(dev->rtlsdr, SOURCE_RATE);
if (r < 0) log(LOG_ERR, "Failed to set sample rate for device #%d. Error %d.\n", dev->device, r);
r = rtlsdr_set_center_freq(dev->rtlsdr, dev->centerfreq);
if (r < 0) log(LOG_ERR, "Failed to set center freq for device #%d. Error %d.\n", dev->device, r);
r = rtlsdr_set_freq_correction(dev->rtlsdr, dev->correction);
if (r < 0 && r != -2 ) log(LOG_ERR, "Failed to set freq correction for device #%d. Error %d.\n", dev->device, r);
r = rtlsdr_set_tuner_gain_mode(dev->rtlsdr, 1);
r |= rtlsdr_set_tuner_gain(dev->rtlsdr, dev->gain);
if (r < 0)
log(LOG_ERR, "Failed to set gain to %0.2f for device #%d. Error %d.\n", (float)rtlsdr_get_tuner_gain(dev->rtlsdr) / 10.0, dev->device, r);
else
log(LOG_INFO, "Device #%d: gain set to %0.2f dB\n", dev->device, (float)rtlsdr_get_tuner_gain(dev->rtlsdr) / 10.0);
r = rtlsdr_set_agc_mode(dev->rtlsdr, 0);
if (r < 0) log(LOG_ERR, "Failed to disable AGC for device #%d. Error %d.\n", dev->device, r);
rtlsdr_reset_buffer(dev->rtlsdr);
log(LOG_INFO, "Device %d started.\n", dev->device);
atomic_inc(&device_opened);
dev->failed = 0;
if(rtlsdr_read_async(dev->rtlsdr, rtlsdr_callback, params, rtlsdr_buffers, 320000) < 0) {
log(LOG_WARNING, "Device #%d: async read failed, disabling\n", dev->device);
dev->failed = 1;
disable_device_outputs(dev);
atomic_dec(&device_opened);
}
return 0;
}
void* controller_thread(void* params) {
device_t *dev = (device_t*)params;
int i = 0;
int consecutive_squelch_off = 0;
struct timeval tv;
if(dev->channels[0].freq_count < 2) return 0;
while(!do_exit) {
SLEEP(200);
if(dev->channels[0].axcindicate == ' ') {
if(consecutive_squelch_off < 10) {
consecutive_squelch_off++;
} else {
i++; i %= dev->channels[0].freq_count;
dev->channels[0].frequency = dev->channels[0].freqlist[i];
dev->centerfreq = dev->channels[0].freqlist[i] + 2 * (double)(SOURCE_RATE / FFT_SIZE);
rtlsdr_set_center_freq(dev->rtlsdr, dev->centerfreq);
}
} else {
if(consecutive_squelch_off == 10) {
if(i != dev->last_frequency) {
// squelch has just opened on a new frequency - we might need to update outputs' metadata
gettimeofday(&tv, NULL);
tag_queue_put(dev, i, tv);
dev->last_frequency = i;
}
}
consecutive_squelch_off = 0;
}
}
return 0;
}
#ifdef NFM
void multiply(float ar, float aj, float br, float bj, float *cr, float *cj)
{
*cr = ar*br - aj*bj;
*cj = aj*br + ar*bj;
}
float fast_atan2(float y, float x)
{
float yabs, angle;
float pi4=M_PI_4, pi34=3*M_PI_4;
if (x==0.0f && y==0.0f) {
return 0;
}
yabs = y;
if (yabs < 0.0f) {
yabs = -yabs;
}
if (x >= 0.0f) {
angle = pi4 - pi4 * (x-yabs) / (x+yabs);
} else {
angle = pi34 - pi4 * (x+yabs) / (yabs-x);
}
if (y < 0.0f) {
return -angle;
}
return angle;
}
float polar_disc_fast(float ar, float aj, float br, float bj)
{
float cr, cj;
multiply(ar, aj, br, -bj, &cr, &cj);
return (float)(fast_atan2(cj, cr) * M_1_PI);
}
float fm_quadri_demod(float ar, float aj, float br, float bj) {
return (float)((br*aj - ar*bj)/(ar*ar + aj*aj + 1.0f) * M_1_PI);
}
#endif
class AFC
{
const char _prev_axcindicate;
#ifdef USE_BCM_VC
float square(const GPU_FFT_COMPLEX *fft_results, int index)
{
return fft_results[index].re * fft_results[index].re + fft_results[index].im * fft_results[index].im;
}
#else
float square(const fftwf_complex *fft_results, int index)
{
return fft_results[index][0] * fft_results[index][0] + fft_results[index][1] * fft_results[index][1];
}
#endif
template <class FFT_RESULTS, int STEP>
int check(const FFT_RESULTS* fft_results, const int base, const float base_value, unsigned char afc)
{
float threshold = 0;
int bin;
for (bin = base;; bin+= STEP) {
if (STEP < 0) {
if (bin < -STEP)
break;
} else if ( (bin + STEP) >= FFT_SIZE)
break;
const float value = square(fft_results, bin + STEP);
if (value <= base_value)
break;
if (base == bin) {
threshold = (value - base_value) / (float)afc;
} else {
if ((value - base_value) < threshold)
break;
threshold+= threshold / 10.0;
}
}
return bin;
}
public:
AFC(device_t* dev, int index) : _prev_axcindicate(dev->channels[index].axcindicate)
{
}
template <class FFT_RESULTS>
void finalize(device_t* dev, int index, const FFT_RESULTS* fft_results)
{
channel_t *channel = &dev->channels[index];
if (channel->afc==0)
return;
const char axcindicate = channel->axcindicate;
if (axcindicate != ' ' && _prev_axcindicate == ' ') {
const int base = dev->base_bins[index];
const float base_value = square(fft_results, base);
int bin = check<FFT_RESULTS, -1>(fft_results, base, base_value, channel->afc);
if (bin == base)
bin = check<FFT_RESULTS, 1>(fft_results, base, base_value, channel->afc);
if (dev->bins[index] != bin) {
#ifdef AFC_LOGGING
log(LOG_INFO, "AFC device=%d channel=%d: base=%d prev=%d now=%d\n", dev->device, index, base, dev->bins[index], bin);
#endif
dev->bins[index] = bin;
if ( bin > base )
channel->axcindicate = '>';
else if ( bin < base )
channel->axcindicate = '<';
}
}
else if (axcindicate == ' ' && _prev_axcindicate != ' ')
dev->bins[index] = dev->base_bins[index];
}
};
void demodulate() {
// initialize fft engine
#ifndef USE_BCM_VC
fftwf_plan fft;
fftwf_complex* fftin;
fftwf_complex* fftout;
fftin = fftwf_alloc_complex(FFT_SIZE);
fftout = fftwf_alloc_complex(FFT_SIZE);
fft = fftwf_plan_dft_1d(FFT_SIZE, fftin, fftout, FFTW_FORWARD, FFTW_MEASURE);
#else
int mb = mbox_open();
struct GPU_FFT *fft;
int ret = gpu_fft_prepare(mb, FFT_SIZE_LOG, GPU_FFT_FWD, FFT_BATCH, &fft);
switch (ret) {
case -1: log(LOG_CRIT, "Unable to enable V3D. Please check your firmware is up to date.\n"); error();
case -2: log(LOG_CRIT, "log2_N=%d not supported. Try between 8 and 17.\n", FFT_SIZE_LOG); error();
case -3: log(LOG_CRIT, "Out of memory. Try a smaller batch or increase GPU memory.\n"); error();
}
#endif
#ifdef NFM
float rotated_r, rotated_j;
#endif
ALIGN float ALIGN2 levels[256];
for (int i=0; i<256; i++) {
levels[i] = i-127.5f;
}
// initialize fft window
// blackman 7
// the whole matrix is computed
ALIGN float ALIGN2 window[FFT_SIZE * 2];
const double a0 = 0.27105140069342f;
const double a1 = 0.43329793923448f; const double a2 = 0.21812299954311f;
const double a3 = 0.06592544638803f; const double a4 = 0.01081174209837f;
const double a5 = 0.00077658482522f; const double a6 = 0.00001388721735f;
for (int i = 0; i < FFT_SIZE; i++) {
double x = a0 - (a1 * cos((2.0 * M_PI * i) / (FFT_SIZE-1)))
+ (a2 * cos((4.0 * M_PI * i) / (FFT_SIZE - 1)))
- (a3 * cos((6.0 * M_PI * i) / (FFT_SIZE - 1)))
+ (a4 * cos((8.0 * M_PI * i) / (FFT_SIZE - 1)))
- (a5 * cos((10.0 * M_PI * i) / (FFT_SIZE - 1)))
+ (a6 * cos((12.0 * M_PI * i) / (FFT_SIZE - 1)));
window[i * 2] = window[i * 2 + 1] = (float)x;
}
struct timeval ts, te;
if(DEBUG)
gettimeofday(&ts, NULL);
// speed2 = number of bytes per wave sample (x 2 for I and Q)
int speed2 = (SOURCE_RATE * 2) / WAVE_RATE;
int device_num = 0;
while (true) {
if(do_exit) {
#ifdef USE_BCM_VC
log(LOG_INFO, "Freeing GPU memory\n");
gpu_fft_release(fft);
#endif
return;
}
device_t* dev = devices + device_num;
pthread_mutex_lock(&dev->buffer_lock);
int available = dev->bufe - dev->bufs;
if (available < 0) {
available += BUF_SIZE;
}
pthread_mutex_unlock(&dev->buffer_lock);
if(atomic_get(&device_opened)==0) {
log(LOG_ERR, "All receivers failed, exiting\n");
do_exit = 1;
continue;
}
if (dev->failed) {
// move to next device
device_num = (device_num + 1) % device_count;
continue;
} else if (available < speed2 * FFT_BATCH + FFT_SIZE * 2) {
// move to next device
device_num = (device_num + 1) % device_count;
SLEEP(10);
continue;
}
#if defined USE_BCM_VC
sample_fft_arg sfa = {FFT_SIZE / 4, fft->in};
for (int i = 0; i < FFT_BATCH; i++) {
samplefft(&sfa, dev->buffer + dev->bufs + i * speed2, window, levels);
sfa.dest+= fft->step;
}
#elif defined (__arm__) || defined (__aarch64__)
for (int i = 0; i < FFT_SIZE; i++) {
unsigned char* buf2 = dev->buffer + dev->bufs + i * 2;
fftin[i][0] = levels[*(buf2)] * window[i*2];
fftin[i][1] = levels[*(buf2+1)] * window[i*2];
}
#else /* x86 */
for (int i = 0; i < FFT_SIZE; i += 2) {
unsigned char* buf2 = dev->buffer + dev->bufs + i * 2;
__m128 a = _mm_set_ps(levels[*(buf2 + 3)], levels[*(buf2 + 2)], levels[*(buf2 + 1)], levels[*(buf2)]);
__m128 b = _mm_load_ps(&window[i * 2]);
a = _mm_mul_ps(a, b);
_mm_store_ps(&fftin[i][0], a);
}
#endif
#ifdef USE_BCM_VC
gpu_fft_execute(fft);
#else
fftwf_execute(fft);
#endif
#ifdef USE_BCM_VC
for (int i = 0; i < dev->channel_count; i++) {
float *wavein = dev->channels[i].wavein + dev->waveend;
__builtin_prefetch(wavein, 1);
const int bin = dev->bins[i];
const GPU_FFT_COMPLEX *fftout = fft->out + bin;
for (int j = 0; j < FFT_BATCH; j++, ++wavein, fftout+= fft->step)
*wavein = sqrtf(fftout->im * fftout->im + fftout->re * fftout->re);
}
# ifdef NFM
for (int j = 0; j < dev->channel_count; j++) {
if(dev->channels[j].modulation == MOD_NFM) {
struct GPU_FFT_COMPLEX *ptr = fft->out;
for (int job = 0; job < FFT_BATCH; job++) {
dev->channels[j].complex_samples[2*(dev->waveend+job)] = ptr[dev->bins[j]].re;
dev->channels[j].complex_samples[2*(dev->waveend+job)+1] = ptr[dev->bins[j]].im;
ptr += fft->step;
}
}
}
# endif // NFM
#else
for (int j = 0; j < dev->channel_count; j++) {
dev->channels[j].wavein[dev->waveend] =
sqrtf(fftout[dev->bins[j]][0] * fftout[dev->bins[j]][0] + fftout[dev->bins[j]][1] * fftout[dev->bins[j]][1]);
# ifdef NFM
if(dev->channels[j].modulation == MOD_NFM) {
dev->channels[j].complex_samples[2*dev->waveend] = fftout[dev->bins[j]][0];
dev->channels[j].complex_samples[2*dev->waveend+1] = fftout[dev->bins[j]][1];
}
# endif // NFM
}
#endif // USE_BCM_VC
dev->waveend += FFT_BATCH;
if (dev->waveend >= WAVE_BATCH + AGC_EXTRA) {
if (foreground) {
GOTOXY(0, device_num * 17 + dev->row + 3);
}
for (int i = 0; i < dev->channel_count; i++) {
AFC afc(dev, i);
channel_t* channel = dev->channels + i;
#if defined (__arm__) || defined (__aarch64__)
float agcmin2 = channel->agcmin * 4.5f;
for (int j = 0; j < WAVE_BATCH + AGC_EXTRA; j++) {
channel->waveref[j] = min(channel->wavein[j], agcmin2);
}
#else
__m128 agccap = _mm_set1_ps(channel->agcmin * 4.5f);
for (int j = 0; j < WAVE_BATCH + AGC_EXTRA; j += 4) {
__m128 t = _mm_loadu_ps(channel->wavein + j);
_mm_storeu_ps(channel->waveref + j, _mm_min_ps(t, agccap));
}
#endif
for (int j = AGC_EXTRA; j < WAVE_BATCH + AGC_EXTRA; j++) {
// auto noise floor
if (channel->sqlevel < 0 && j % 16 == 0) {
channel->agcmin = channel->agcmin * 0.97f + min(channel->agcavgslow, channel->agcmin) * 0.03f + 0.0001f;
}
// average power
channel->agcavgslow = channel->agcavgslow * 0.99f + channel->waveref[j] * 0.01f;
float sqlevel = channel->sqlevel > 0 ? (float)channel->sqlevel : 3.0f * channel->agcmin;
if (channel->agcsq > 0) {
channel->agcsq = max(channel->agcsq - 1, 1);
if (channel->agcsq == 1 && channel->agcavgslow > sqlevel) {
channel->agcsq = -AGC_EXTRA * 2;
channel->axcindicate = '*';
if(channel->modulation == MOD_AM) {
// fade in
for (int k = j - AGC_EXTRA; k < j; k++) {
if (channel->wavein[k] > sqlevel) {
channel->agcavgfast = channel->agcavgfast * 0.9f + channel->wavein[k] * 0.1f;
}
}
}
}
} else {
if (channel->wavein[j] > sqlevel) {
if(channel->modulation == MOD_AM)
channel->agcavgfast = channel->agcavgfast * 0.995f + channel->wavein[j] * 0.005f;
channel->agclow = 0;
} else {
channel->agclow++;
}
channel->agcsq = min(channel->agcsq + 1, -1);
if (channel->agclow == AGC_EXTRA - 12) {
channel->agcsq = AGC_EXTRA * 2;
channel->axcindicate = ' ';
if(channel->modulation == MOD_AM) {
// fade out
for (int k = j - AGC_EXTRA + 1; k < j; k++) {
channel->waveout[k] = channel->waveout[k - 1] * 0.94f;
}
}
}
}
if(channel->agcsq != -1) {
channel->waveout[j] = 0;
} else {
if(channel->modulation == MOD_AM) {
channel->waveout[j] = (channel->wavein[j - AGC_EXTRA] - channel->agcavgfast) / (channel->agcavgfast * 1.5f);
if (abs(channel->waveout[j]) > 0.8f) {
channel->waveout[j] *= 0.85f;
channel->agcavgfast *= 1.15f;
}
}
#ifdef NFM
else { // NFM
multiply(channel->complex_samples[2*(j - AGC_EXTRA)], channel->complex_samples[2*(j - AGC_EXTRA)+1],
// FIXME: use j instead of wavecnt?
channel->timeref_cos[channel->wavecnt],
channel->timeref_nsin[channel->wavecnt],
&rotated_r,
&rotated_j);
if(fm_demod == FM_FAST_ATAN2) {
channel->waveout[j] = polar_disc_fast(rotated_r, rotated_j, channel->pr, channel->pj);
} else if(fm_demod == FM_QUADRI_DEMOD) {
channel->waveout[j] = fm_quadri_demod(rotated_r, rotated_j, channel->pr, channel->pj);
}
channel->pr = rotated_r;
channel->pj = rotated_j;
// de-emphasis IIR + DC blocking
channel->agcavgfast = channel->agcavgfast * 0.995f + channel->waveout[j] * 0.005f;
channel->waveout[j] -= channel->agcavgfast;
channel->waveout[j] = channel->waveout[j] * (1.0f - channel->alpha) + channel->waveout[j-1] * channel->alpha;
}
#endif // NFM
}
#ifdef NFM
if(channel->modulation == MOD_NFM)
channel->wavecnt = (channel->wavecnt + 1) % WAVE_RATE;
#endif // NFM
}
memmove(channel->wavein, channel->wavein + WAVE_BATCH, (dev->waveend - WAVE_BATCH) * 4);
#ifdef NFM
if(channel->modulation == MOD_NFM)
memmove(channel->complex_samples, channel->complex_samples + 2 * WAVE_BATCH, (dev->waveend - WAVE_BATCH) * 4 * 2);
#endif
#ifdef USE_BCM_VC
afc.finalize(dev, i, fft->out);
#else
afc.finalize(dev, i, fftout);
#endif
if (foreground) {
if(dev->mode == R_SCAN)
printf("%4.0f/%3.0f%c %7.3f", channel->agcavgslow, channel->agcmin, channel->axcindicate, (dev->channels[0].frequency / 1000000.0));
else
printf("%4.0f/%3.0f%c", channel->agcavgslow, channel->agcmin, channel->axcindicate);
fflush(stdout);
}
}
dev->waveavail = 1;
dev->waveend -= WAVE_BATCH;
if(DEBUG) {
gettimeofday(&te, NULL);
debug_bulk_print("waveavail %lu.%lu %lu\n", te.tv_sec, te.tv_usec, (te.tv_sec - ts.tv_sec) * 1000000UL + te.tv_usec - ts.tv_usec);
ts.tv_sec = te.tv_sec;
ts.tv_usec = te.tv_usec;
}
pthread_cond_signal(&mp3_cond);
dev->row++;
if (dev->row == 12) {
dev->row = 0;
}
}
dev->bufs += speed2 * FFT_BATCH;
if (dev->bufs >= BUF_SIZE) dev->bufs -= BUF_SIZE;
device_num = (device_num + 1) % device_count;
}
}
void usage() {
cout<<"Usage: rtl_airband [options] [-c <config_file_path>]\n\
\t-h\t\t\tDisplay this help text\n\
\t-f\t\t\tRun in foreground, display textual waterfalls\n";
#ifdef NFM
cout<<"\t-Q\t\t\tUse quadri correlator for FM demodulation (default is atan2)\n";
#endif
#if DEBUG
cout<<"\t-d <file>\t\tLog debugging information to <file> (default is "<<DEBUG_PATH<<")\n";
#endif
cout<<"\t-c <config_file_path>\tUse non-default configuration file\n\t\t\t\t(default: "<<CFGFILE<<")\n\
\t-v\t\t\tDisplay version and exit\n";
exit(EXIT_SUCCESS);
}
int main(int argc, char* argv[]) {
#pragma GCC diagnostic ignored "-Wwrite-strings"
char *cfgfile = CFGFILE;
char *pidfile = PIDFILE;
#pragma GCC diagnostic warning "-Wwrite-strings"
int opt;
char optstring[16] = "fhvc:";
#ifdef NFM
strcat(optstring, "Q");
#endif
#if DEBUG
strcat(optstring, "d:");
#endif
while((opt = getopt(argc, argv, optstring)) != -1) {
switch(opt) {
#ifdef NFM
case 'Q':
fm_demod = FM_QUADRI_DEMOD;
break;
#endif
#if DEBUG
case 'd':
debug_path = strdup(optarg);
break;
#endif
case 'f':
foreground = 1;
break;
case 'c':
cfgfile = optarg;
break;
case 'v':
cout<<"RTLSDR-Airband version "<<RTL_AIRBAND_VERSION<<"\n";
exit(EXIT_SUCCESS);
case 'h':
default:
usage();
break;
}
}
#if DEBUG
if(!debug_path) debug_path = strdup(DEBUG_PATH);
init_debug(debug_path);
#endif
#if !defined (__arm__) && !defined (__aarch64__)
#define cpuid(func,ax,bx,cx,dx)\
__asm__ __volatile__ ("cpuid":\
"=a" (ax), "=b" (bx), "=c" (cx), "=d" (dx) : "a" (func));
int a,b,c,d;
cpuid(1,a,b,c,d);
if((int)((d >> 25) & 0x1)) {
/* NOOP */
} else {
printf("Unsupported CPU.\n");
error();
}
#endif /* !__arm__ */
// read config
try {
Config config;
config.readFile(cfgfile);
Setting &root = config.getRoot();
if(root.exists("syslog")) do_syslog = root["syslog"];
if(root.exists("pidfile")) pidfile = strdup(root["pidfile"]);
if(root.exists("rtlsdr_buffers")) rtlsdr_buffers = (int)(root["rtlsdr_buffers"]);
if(rtlsdr_buffers < 1) {
cerr<<"Configuration error: rtlsdr_buffers must be greater than 0\n";
error();
}
if(root.exists("shout_metadata_delay")) shout_metadata_delay = (int)(root["shout_metadata_delay"]);
if(shout_metadata_delay < 0 || shout_metadata_delay > 2*TAG_QUEUE_LEN) {
cerr<<"Configuration error: shout_metadata_delay is out of allowed range (0-"<<2 * TAG_QUEUE_LEN<<")\n";
error();
}
if(root.exists("localtime") && (bool)root["localtime"] == true)
use_localtime = true;
#ifdef NFM
if(root.exists("tau"))
alpha = ((int)root["tau"] == 0 ? 0.0f : exp(-1.0f/(WAVE_RATE * 1e-6 * (int)root["tau"])));
#endif
Setting &devs = config.lookup("devices");
device_count = devs.getLength();
if (device_count < 1) {
cerr<<"Configuration error: no devices defined\n";
error();
}
struct sigaction sigact, pipeact;
memset(&sigact, 0, sizeof(sigact));
memset(&pipeact, 0, sizeof(pipeact));
pipeact.sa_handler = SIG_IGN;
sigact.sa_handler = &sighandler;
sigaction(SIGPIPE, &pipeact, NULL);
sigaction(SIGHUP, &sigact, NULL);
sigaction(SIGINT, &sigact, NULL);
sigaction(SIGQUIT, &sigact, NULL);
sigaction(SIGTERM, &sigact, NULL);
uintptr_t tempptr = (uintptr_t)malloc(device_count * sizeof(device_t)+31);
tempptr &= ~0x0F;
devices = (device_t *)tempptr;
shout_init();
if(do_syslog) openlog("rtl_airband", LOG_PID, LOG_DAEMON);
if(root.exists("mixers")) {
Setting &mx = config.lookup("mixers");
mixers = (mixer_t *)calloc(mx.getLength(), sizeof(struct mixer_t));
if(!mixers) {
cerr<<"Cannot allocate memory for mixers\n";
error();
}
if((mixer_count = parse_mixers(mx)) > 0) {
mixers = (mixer_t *)realloc(mixers, mixer_count * sizeof(struct mixer_t));
if(!mixers) {
cerr<<"Cannot allocate memory for mixers\n";
error();
}
} else {
free(mixers);
}
} else {
mixer_count = 0;
}
int devs_enabled = parse_devices(devs);
if (devs_enabled < 1) {
cerr<<"Configuration error: no devices defined\n";
error();
}
debug_print("mixer_count=%d\n", mixer_count);
for(int z = 0; z < mixer_count; z++) {
mixer_t *m = &mixers[z];
debug_print("mixer[%d]: name=%s, input_count=%d, output_count=%d\n", z, m->name, m->input_count, m->channel.output_count);
}
int device_count2 = rtlsdr_get_device_count();
if (device_count2 < devs_enabled) {
cerr<<"Not enough devices ("<<devs_enabled<<" configured, "<<device_count2<<" detected)\n";
error();
}
for(int i = 0; i < devs_enabled; i++) {
device_t* dev = devices + i;
if(dev->device >= device_count2) {
cerr<<"Specified device id "<<(int)dev->device<<" is greater or equal than number of devices ("<<device_count2<<")\n";
error();
}
}
device_count = devs_enabled;
} catch(FileIOException e) {
cerr<<"Cannot read configuration file "<<cfgfile<<"\n";
error();
} catch(ParseException e) {
cerr<<"Error while parsing configuration file "<<cfgfile<<" line "<<e.getLine()<<": "<<e.getError()<<"\n";
error();
} catch(SettingNotFoundException e) {
cerr<<"Configuration error: mandatory parameter missing: "<<e.getPath()<<"\n";
error();
} catch(SettingTypeException e) {
cerr<<"Configuration error: invalid parameter type: "<<e.getPath()<<"\n";
error();
} catch(ConfigException e) {
cerr<<"Unhandled config exception\n";
error();
}
if(!foreground) {
int pid1, pid2;
if((pid1 = fork()) == -1) {
cerr<<"Cannot fork child process: "<<strerror(errno)<<"\n";
error();
}
if(pid1) {
waitpid(-1, NULL, 0);
return(0);
} else {
if((pid2 = fork()) == -1) {
cerr<<"Cannot fork child process: "<<strerror(errno)<<"\n";
error();
}
if(pid2) {
return(0);
} else {
int nullfd, dupfd;
if((nullfd = open("/dev/null", O_RDWR)) == -1) {
log(LOG_CRIT, "Cannot open /dev/null: %s\n", strerror(errno));
error();
}
for(dupfd = 0; dupfd <= 2; dupfd++) {
if(dup2(nullfd, dupfd) == -1) {
log(LOG_CRIT, "dup2(): %s\n", strerror(errno));
error();
}
}
if(nullfd > 2) close(nullfd);
FILE *f = fopen(pidfile, "w");
if(f == NULL) {
log(LOG_CRIT, "Cannot write pidfile: %s\n", strerror(errno));
error();
} else {
fprintf(f, "%ld\n", (long)getpid());
fclose(f);
}
}
}
}
log(LOG_INFO, "RTLSDR-Airband version %s starting\n", RTL_AIRBAND_VERSION);
for (int i = 0; i < mixer_count; i++) {
if(mixers[i].enabled == false)
continue; // no inputs connected = no need to initialize output
channel_t *channel = &mixers[i].channel;
if(channel->need_mp3)
channel->lame = airlame_init(mixers[i].channel.mode);
for (int k = 0; k < channel->output_count; k++) {
output_t *output = channel->outputs + k;
if(output->type == O_ICECAST)
shout_setup((icecast_data *)(output->data), channel->mode);
}
}
for (int i = 0; i < device_count; i++) {
device_t* dev = devices + i;
if(pthread_mutex_init(&dev->buffer_lock, NULL) != 0) {
cerr<<"Failed to initialize buffer mutex for device "<<i<<" - aborting\n";
error();
}
for (int j = 0; j < dev->channel_count; j++) {
channel_t* channel = dev->channels + j;
if(channel->need_mp3)
channel->lame = airlame_init(channel->mode);
for (int k = 0; k < channel->output_count; k++) {
output_t *output = channel->outputs + k;
if(output->type == O_ICECAST)
shout_setup((icecast_data *)(output->data), channel->mode);
}
}
pthread_create(&dev->rtl_thread, NULL, &rtlsdr_exec, dev);
if(dev->mode == R_SCAN) {
if(pthread_mutex_init(&dev->tag_queue_lock, NULL) != 0) {
cerr<<"Failed to initialize mutex - aborting\n";
error();
}
// FIXME: not needed when freq_count == 1?
pthread_create(&dev->controller_thread, NULL, &controller_thread, dev);
}
}
int timeout = 50; // 5 seconds
while (atomic_get(&device_opened) != device_count && timeout > 0) {
SLEEP(100);
timeout--;
}
if(atomic_get(&device_opened) != device_count) {
cerr<<"Some devices failed to initialize - aborting\n";
error();
}
if (foreground) {
printf("\e[1;1H\e[2J");
GOTOXY(0, 0);
printf(" ");
for (int i = 0; i < device_count; i++) {
GOTOXY(0, i * 17 + 1);
for (int j = 0; j < devices[i].channel_count; j++) {
printf(" %7.3f ", devices[i].channels[j].frequency / 1000000.0);
}
if (i != device_count - 1) {
GOTOXY(0, i * 17 + 16);
printf("-------------------------------------------------------------------------------");
}
}
}
THREAD thread2;
pthread_create(&thread2, NULL, &icecast_check, NULL);
THREAD thread3;
pthread_create(&thread3, NULL, &output_thread, NULL);
THREAD thread4;
if(mixer_count > 0)
pthread_create(&thread4, NULL, &mixer_thread, NULL);
demodulate();
log(LOG_INFO, "cleaning up\n");
for (int i = 0; i < device_count; i++) {
rtlsdr_cancel_async(devices[i].rtlsdr);
pthread_join(devices[i].rtl_thread, NULL);
if(devices[i].mode == R_SCAN)
pthread_join(devices[i].controller_thread, NULL);
}
log(LOG_INFO, "rtlsdr threads closed\n");
close_debug();
return 0;
}
// vim: ts=4