diff --git a/docs/getting_started.ipynb b/docs/getting_started.ipynb index dd7be66..63ec2eb 100644 --- a/docs/getting_started.ipynb +++ b/docs/getting_started.ipynb @@ -16,6 +16,7 @@ "- Multi Atom Solutes: generalize to solutes with many atoms\n", "- Visualization: use `nglview` to visualize structures\n", "- Residence and Networking: calculate residence times and solute-solvent networks\n", + "- Plotting and Comparing: generate illustrative plots of solvation properties\n", "- RDF Fitting: See how solvation-analysis finds solvation cutoffs\n", "\n", "For a full catalog of the properties calculated, read through the API documentation. Solvation-analysis is a powerful tool that calculates a wide range of properties, but it will take some time to master. If you ever have any questions, or encounter any bugs, please raise an issue on [GitHub](https://github.com/MDAnalysis/solvation-analysis).\n" diff --git a/docs/tutorials/plotting_tutorial.ipynb b/docs/tutorials/plotting_tutorial.ipynb index ce2f295..10caeb5 100644 --- a/docs/tutorials/plotting_tutorial.ipynb +++ b/docs/tutorials/plotting_tutorial.ipynb @@ -47,7 +47,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Solute dict: {'ea': , 'eaf': , 'fea': , 'feaf': }\n", + "Solute dict: {'ea': , 'eaf': , 'fea': , 'feaf': }\n", "\n", "Solute names: ea eaf fea feaf\n" ] @@ -64,7 +64,8 @@ " eax_solvent_name: atom_groups[eax_solvent_name],\n", " },\n", " analysis_classes=['coordination', 'pairing', 'speciation', 'networking'],\n", - " networking_solvents=['pf6']\n", + " networking_solvents=['pf6'],\n", + " solute_name=\"Li\",\n", " )\n", " solute.run()\n", " solutes[eax_solvent_name] = solute\n", @@ -95,7 +96,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAIAAADCEh9HAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3de1xM+f8H8PekUqnoQq6topJc2nLLNbZccutXWha5rlh2k2tYNhJhfRXSytpVfMW6K1KSELKKNhJKqBTdL9NtqpnP74/jO5uamaa5nZl6Px/7xzjnc8557bbenTmfz/l8GIQQQAghJColugMghJBiwzKKEEJiwTKKEEJiwTKKEEJiwTKKEEJiwTKKEEJiUaY7AFJgp0+f/vDhA/XZ3t7eysqK3jwI0QLvRpHodu3aVVVVpaOjo6Ojo6mpSXcchOjBwOH3SGSdOnV69epV165d6Q6CEJ3wbhSJqKqqislkJicnBwYGJiQk0B0HIdpgGUUiYrPZ3333XVxcXEFBwfTp0wMDA+lOhBA98Es9koALFy5s2LDh3bt3dAdBiAZ4N4pEx/0d3LFjx9raWnrDIEQXLKNIRJGRkaNHj7569Wp0dPSGDRuWLl1KdyKE6IFf6pGI2Gx2SEhIbGwsk8mcMWPG4sWLGQyGNC5UX19/6dKl0NBQHx+fAQMGAACHw/n111/DwsI0NDRWrVrl6OgojeuKKTMzc/fu3dnZ2ZaWlhs3buzUqRPdiZC0YBlFco0QMn78eENDw5iYmJCQEDs7OwDw8/M7duzYiRMncnNzFy9efOvWraFDh9Kd9AvV1dX9+vWbPn367NmzAwICamtrL1++THcoJC34FhOSawwG486dOwBgaWnJ3RgYGLh3794RI0YAwL1794KCguStjN69e7empubw4cMMBmPAgAEGBgY5OTk9evSgOxeSCnw2ihRMbW1tRkYGt25aW1u/fPmS3khNqaqqAkB9fT0AaGlp6ejoZGRk0B0KSQvejSIFU15eTgjp0KED9UctLa2ysjJ6IzU1ZswYY2NjOzs7a2vrx48fV1RU1NTU0B0KSQvejSIFo6urq6KiUlhYSP2xoKBADt9GVVFRuXPnjru7+9ChQ8+dO8fhcL766iu6QyFpwbtRpGCUlJRsbGwiIyNNTU0BICoqavTo0XSH4qF9+/bOzs4AEBYWpqOj06dPH7oTIWnBMopEVVgIcXGQmwssFujrg5UVDBggjetERkYmJyfn5+f/9ddfGRkZy5cv37p166xZs0pKSnJzc+/fvx8QECCN64rpwIEDOjo6WVlZhw4dOnr0qLIy/l1rtfBHi1ru3TvYuBEuXQIO54vtZmawZw9IZxTn6tWruZ/t7e3v3r0bHh5uZmaWlJQkh1/qAcDIyOjRo0caGhp37twZOHAg3XGQFOG4UdRCSUkwaRIUFICWFri4gKUltG8P797BlSvw6hUAgI8P/Pwz3SkRkh0so6glmEywtIS3b2HECLh8GRreBtbXg5cX7N4NDAaEh8PUqfSlREimsIyilti3Dzw9QV8fUlOhc2ceDWbPhnPnwMICnj8H6bwbipC8wQFPqCVOnAAAcHPjXUMB4JdfAABevIDHj2UQJzk5OSEhobS0lOfe4uLihISE58+fS/CK+fn5z58/z8zM5NcgNTX1+fPnlZWVErwoknNYRpHQCgvh9WsAgMmT+baxsIDevQEAHjyQQSIHB4dhw4bFxsby3Hvz5s1hw4bNnDlTglc8cuTIoEGDVq5cya/BsGHDBg0a9Pfff0vwokjOYRlFQnv7FqhHQP36CWpmbg4A8OaNLCIhJAewjCKhcb87d+woqBk1IxyfL9oItT5YRpHQVFQ+f6ivF9SMmgZfVVXqeRCSD1hGkdB0dT9/KCgQ1Ix6253bGKHWDssoEpqZ2ed7zORkvm04HHj2DABg8GAZpUKIbvgyKBKamhqMGgWxsXDxIsyYwbtNdDSUlEC7djB+vMxyJScnc+fNa0iyQ50aKi4uvnfvHs9dnEYvyKI2AMsoaokVKyA2FkJDYfVqsLJqvLe2FjZvBgCYPh0MDWUWaseOHTK7FuXRo0fjxo2T8UWR3MIyilrCxQWOH4foaJgyBf77X7C3/3dXbi4sWQJJSaCpCf/5jyxDTZ061djYuOn29PT0yMhIaVyxV69ek/kMnj1x4kS94C441OpgGUUtwWDAmTMwfTrEx8PEiWBhAdbWoKoK797B/fvAYoG2Nly+DLyKmvQsXbr0//7v/5puP3v2rJTK6MCBA48dO8ZzV2hoKJbRtgbLKGohPT24cwcCAyEwEF68gBcvPm/v1AnmzQMvL1l+nUdIHmAZRS2nqgoeHuDhATk5kJ0NtbWgrw+mpoAzE6M2Cf+/RyK5eBHevAFnZxgx4vMWf39gscDDA9q3pzUZQrKGZRSJJDgYrl0DCwvo2/fzFi8vKC+HH37AMoraGhx+jxBCYsEyihBCYsEv9UiBPX36lM1m6/J5f9/R0TEnJ0ey6zv89NNPCxcu1NDQ4NcgJSWFw+F0795dghdFcg7vRpFIqNrUcJmQplukz8DAoHv37mpqajz3qqmpRUZGDh8+PDU1VSKXI4Q4OTkdPnxYQBnt3bu3sbExv0ioVcIyilqzxMTEnJwcd3d3iZzt1KlTcXFxZ86ckcjZUKuBZRS1Zj4+Pnp6ejExMdeuXRPzVBUVFZs3bwaAffv2aWtrSyIdaiWwjKLWTFdXd+vWrQDg4eHBYrHEOZWvr29ubq61tfX8+fMllA61ElhGUSv3448/WlhYZGRkBAQEiHySd+/eHThwgMFgHDlyREkJ/9agL+D/EEgk8tHFJAxlZWV/f38A2LFjx6dPn0Q7yfr162tqalxdXYcPHy7RdKg1wDKKWj87OzsHBwcmk+nl5SXC4bdv37506ZKmpqavr6/Es6FWAMsoahMOHjzYvn3748ePP3nypEUHstnsNWvWAMCWLVtwNCjiCcsoahP69u27cuVKDoezevXqFg3IP3r06LNnz4yNjaliilBTWEZRW7F9+/auXbs+ePDg4sWLQh5SUlKyfft2ANi/fz+OqEf8YBkVXUVFRWBg4IULF7hb7t+/v2bNmnXr1t29e5fGYDLwvmfPDzY2hdyV6wGyrK0/2NjI87Tv2traVE1cu3ZtVVWVMId4eXkVFhZOmDCB5+z6rcA///xz7Nixs2fPVlRU0J1FgWEZFdHp06e//vrr33777fz589SWM2fOuLu7m5ubm5qaOjs7R0VF0ZtQqlZmZ/eKj09osFpG/8TEXvHxLPnrqW9o2bJl1tbW2dnZfn5+zTZ++fLl0aNH27VrJ0xjRfT77787OjqWlpbevn170KBBJSUldCdSWASJpKioqK6u7vDhw99++y21JTc39+PHj9TnRYsWeXp60pdO6qZMmQIAERER3C3UEscVFRU0phJGbGwsAGhoaGRlZQluOWnSJABYtWqVbILJ3tixY3/77Tfqs4mJSVhYGL15FBfejYpIV1dX+cs1M7p169a1a1cWi/Xw4cOYmJipU6fSlQ0JYGtr6+TkVFVVRb3dxM/Vq1ejoqJ0dHSo5wCtkqmpaUhISFZW1ps3b4qLiwcOHEh3IkWFZVTCHBwcHB0dhwwZMmTIELqzIN6o/qJTp049ePCAZ4Pa2tqNGzcCwI4dO/T19WWbTnZ27tyZlpZmYWExZMiQbdu29e7dm+5EigrLqITFxMTk5uYyGIxt27Y13M5isSorK+vq6ngeRQiprKysrKyUSUYJIIQAAKPBk9CmW+SWkZHRmjVrCCHr168nvAY/+fn5paWlmZubr1ixQvbxZGbWrFkeHh75+fmHDh3auXOn8AMYUCNYRiWmtraW+juprKw8cuTIRnNcOjo6ampq7t69m+exqampmpqampqaClRJFRo1lv7Ro0enT59utCsvL496W8nPz0+lwVAEOZSQkNCzZ09jY2N+Db7//vuePXvu2bOn6a6SkpIHDx4sXrxYXV19wYIF8+bNu379ujTDtmZYRkVUXl5+69at169f5+Xl3bp1q7i4eN++fU5OTtHR0devXw8MDHRwcKA7I+KL+ytt06ZNjcb6bN68uaysbObMmVQXkzxjsVg5OTkfPnzg16CwsDAnJ6esrKzpLh0dnb59+wYHB9fX1+fm5t6+fRsfQ4kMy6iIiouLz58/X1tba2Zmdv78+fz8fE9Pz/HjxwcEBPz5559eXl6rVq2iOyMSZMGCBcOGDcvJydm7dy9349OnT0NCQlRVVfft20djNtm4du1aUlKSubn5xIkT58yZ07qfYEgVrsUkot69ewcFBTXa6O7uLqmJ1pG0MRiMgwcPjhw5cv/+/UuXLu3duzchxMPDg8PhrFmzxtTUlO6AUmdmZobPQyUC70aRKBS6i4lrxIgRc+fOrampofrlQ0ND4+LiDAwMqFnuERISllHUpu3du7dDhw7nz5+PiorasmULAPj6+nbs2JHuXEiR4Jd6mSovL+fZIZCXlyf7MAgAevTosXHjRi8vr4ULF+bl5VlZWS1cuJDuUEjBYBmVqQMHDhw4cIDuFBLz/v37ESNGEEJ27NhBdxbRbdiwISAgIC8vj8Fg+Pn5KdwaIXV1ddSbuE2JufwUEhKWUZkyNjbmOcqvsrIyPj5e9nlERj0JpWbwVFJScnBwULjqQ3nz5s2WLVsKCgq0tLSYTOb333+/a9cuFxcXunO1jK6uLs/tRUVF1dXVMg7TFtH0Ln+bM3nyZADYvn07z70pKSnUj0P+p/YghERHR+vo6FCB9fX1v/vuO2ouTiUlpa1bt1ZXV9MdUCilpaXr169XVVUFAG1t7aVLl3J756dMmfLq1Su6AzYvLi4OAFRUVPg1mDlzJgBs2rRJlqnaIIW8g0B0ef369dSpU+3t7UtKSszMzK5fv15QUBAaGpqenu7q6koI8fHxMTExOXnyJGnJDPMyxuFwTp48aWZmtn///rq6OldX19evXx8/fjwlJSUoKEhfX//GjRsDBw5cvnx5YWEh3WGRIqC7jrcVwt+N5uXlyeE9aXFxsbu7OzWplY6Ozp49e1gsVqM2sbGxgwcPpv5FbG1t//nnH1qiCvbo0aMRI0ZQIYcNGxYfH9+oQVFRkbu7e7t27QBAV1fX39+/vr6elqgCVFVV1dfX492onMAyKiPCl1FnZ+fu3bsHBQWx2WwZh+Sprq4uKCioc+fOAKCsrOzm5pafn8+vMZvNDgkJ6dKlCwAoKSm5urrm5eXJMq0A2dnZrq6u1MjWHj16hISEcDgcfo2TkpLGjRtH/VAsLS3v3r0ry6iChYWFGRkZHTt2DMuonMAyKiNCltH8/Pxhw4ZRn21sbB4/fizjnI3cunWLOw3lhAkTkpOTG+5lsViRkZFXr17lzldNKSkp8fT0pB47durUieetqyxVVlZ6eXmpq6sDgIaGhqenJ5PJbNTm+fPnnz59arSRKljUv/60adPevn0rq8i8NSzu9vb2WEblBJZRGRH+bpTD4Zw7d87Q0BAAGAyGi4tLs/O0S0NaWhq3w7pv377nzp1r1CA7O7t///4zZsxYuHChrq5uTExMowapqakTJ06kzuAycSKJipJV9gY4HPZ//2ttakr9x5w7d252dnajJjdu3Bg7dqyysrKXl1fTE1RVVe3Zs0dLSwsA1NXVPT09y8vLZZH8S4WFhU0fNWAZlRNYRmWkpT31FRUVXl5eVA94hw4dvLy8ZNYDzmQyvby82rdvz710TU1N02bPnj3jLjuxdevW2bNn8zxbdHS0hYVFrKUlASB2duTFCylGbyQxkYwaRQAe2tpaW1vHxcXxbBUREZGUlLRq1SqeZZSSk5PDfSDQvXt3wQ8EJKu2ttbf3596sUpFRcXd3b2kpITahWVUTmAZlZGkpKTo6Gh+3worKiqio6Ojo6MbPQ/NyspydXWlKmyvXr1CQkKkGpJ6smlgYMB9stno2zpP9fX1M2bM2Lp1K98GLBbZt49oaxMAoqpKNmwgZWUSDd5ETg5ZsIAwGASAdOtWHxLS7INmwWWU8vjxYxsbG+rHMXTo0IcPH0osMB/ULyHqinZ2dikpKQ335ubmBgQEcNdTaioiIiIgIKBpNxqSLCyjCoBauJH6uzR+/PhGDygl5dGjR8OHDxfQhc3TokWLunXrZmNjw/OO9QuFhcTdnbRrRwCInh7x9yfS6AFnsYi//78l291dyJItTBklhHA4nJCQkK5du1JPCYT8TSMCamwZ9eMwNTUNDw+XxlWQRGAZVQzUfaKQ3eUt1bALu2fPni36xlpeXv7y5ctJkyZRC3I078kTMmYMASAAxMqK3Lsneu6mwsKIsfHnk0+bRjIyhD9UyDJKoR65NPvcQzTFxcVy1UGHmoVlVJE0Grzp7+9fV1cnzgmF6cIWxpUrV0xNTVtwQFgY6d3733r37h2PNhUVJCiIuLiQoUOJqSmxsSFLlpCLFwnPr+epqWTSpM8nNDcnN2609F+hRWWUkp6eLrgXrqXkebgYEgDLqOJ59eoVtUw8APTr16/hYvHCo8YDfPXVV9zxAO/fv2/RGSIiIjZu3FhRUVFbW7to0aLp06e3LEFlJdmzh2hqEgCioUE8PUnDCn79OjEw+FwWG/0zaBB5/frflkVF/z4r0NUV+VmBCGWUEhMT03BM2LNnz0Q4CWny6EY+X15APGEZVVRhYWF9+vThDml88+aN8McmJCSMGjWKOlZAF7ZgJSUlixYt0tPT09HRmTZtWk5OjggnIe/fk2+//VwfTU1JbS0hhNy4QZSVCQAZPZpcv05KSwkhJDeX/PknMTQkAERfn1BFPy2NdOpEAIiKCvHwIP/rwm6Rs2fP6jQgwrNO6g0Failm6pFLQUGB8IfLuCMRSRyWUQVGDYXR1tbmDoUpa647JScnx83NjZqNqVu3bvLyrtSjR2T4cEKNyykr+3wfOns2j/vKvDxiZvZ57BRl7FhiZ0e+7MKmBfUWKfXIhRra2ewjFxqHtSEJwjKq8HJzc4WpjCwWi1tzVVVVham5MsVmE6qCHDr0+es5dRPa1L17n+9enzwhhBA6BsML8PLlS2qMMPXI5Qafp7SNevxdXFwyMzNlHBVJCpbRViIxMbHh9/T79+833BsWFsad53TatGkZLenClrUJEwgAWbFCUBsLCwJAtm2TVaYWE/wfvNH40wcPHtCVE0kEltHWo+lbpJmZmampqdz11s3NzfndHMkRLS0CQAQ/H3RzIwBk8mRZZRIFz9v/Dx8+CD89ClIUWEZbGyaTuWXLFupxm5qaGvVlv3PnzkePHpXDCd8aq6j4/IX99m1BzXbuJADE0lJWsUT34cOH+fPnU3VTV1eX+rmoq6tv27ZNDqdDRKLBaZtbG01NzV27dqWlpY0aNYrq4nBxcUlNTV2+fDk1sYVcq6r6/EFdXVAzaumhigqp5xFbjx49Tp069fjx4379+jGZTBaL9c0337x48cLb25vfAkpI4WAZbZ309PSys7Opvqbi4mJqLI7wIiIi7O3tDx48KKV4fGlpff5QWSmoGZMJAKCtLfU8TaSlpS1fvtzBwcHb21v4ZY4GDRrEZrOp32pdunThTr6HWgcso63Trl27srKyBg8erKenFxMTEx4eLvyx5eXlK1eu1NTUfPXqlfQS8qamBtTqbO/fC2pG7e3RQ/qBvlBVVWVra6urq7t+/frbt2//9NNPQh544MCB9PR0ExMTDQ2Ns2fPUjMzodaD5ocKSArevn2rpqbGYDDi4uL8/f0BoE+fPsK/9L18+fK1a9d6e3uvENxdLiXUO51LlghqY2pKAMjOnbLK9NmJEyesrKyoz2/evGnfvn1RUVGzR3369InqaIqMjPzll18A4Ouvv5aL4bpIQvButBVav359TU2Nq6vr6NGjV61aNWDAgIyMjMOHDwtz7L17927cuEHnuvPOzgAAFy9CURHvBjExkJYGDAbMmiXLXADw/Plz7kClPn36dOrUKS0trdmjqJmeHR0dJ02atGnTJkNDw6SkpJCQECmHRbKDZbS1iY2NvXTpkoaGho+PDwAoKytTN6Te3t4fP34UfCyLxVqxYsWhQ4c0NTVlkZWnuXOhZ08oKwM3N6ivb7w3Px9WrgQAcHSEfv1kHK2kpESL+/QWQFtbu4hfrf+fJ0+enDp1SlVVdd++fQCgrq6+e/duANi8eXNZWZlU0yKZwTLaqrDZbA8PDwD4+eefe/XqRW385ptvpk2bxmQyqW+UAuzatYtamvTYsWOJiYmpqakPHz6UeuhGOnSA4GBQVYVLl2DsWLhx43OPfEEBBAfD0KGQlgbdu0NgoKyDAXTp0qW4uJj7x+LiYmqKa34IIR4eHhwOZ926dSYmJtTGuXPnjhkzJi8vz9fXV7pxkczQ/VQBSdKRI0cAwMjIqNGr2dSDPCUlpYSEBAGHnzhxwvN/xowZY2lpefXqVSlH5uPmTdK9+7+zOikp/ft5yBDeE+tJ34ULF0xNTakB8//884+2trbgeQVPnjwJAAYGBo3eu33y5ImSkpKqqmpaWpp0EyOZwDLaenAHNl28eLHp3nXr1gHAyJEjhXxthrYuJq7KShIURJydyeDBxNiYDB9OFi8mV64Q+l77qaur69+//5w5c44fP96/f38B66YQQiorK6k3yoKDg5vuXbRoEQA4OjpKLSySHSyjrYe7uzsAjB8/nufe8vJyaiKMv/76S5izPXny5J5kp6ZvFYqKinx9fVetWnX69GnBv5B+/vlnALC2tubZKc/tvo+iZcFUJFFYRluJ1NRUFRWVdu3aCVipKSgoCAB69epVWVkpy2xtUGZmpoaGBjXmjF8bqq+pf//+Yi5hgGiHZbSVoCZnW7lypYA2bDZ7yJAhAODt7S2zYG2Ts7MzALi6ugpow2KxqH6nI0eOyCwYkgYso63B1atXAUBHR6fZSdfv37/PYDDU1dVxdkvpuX37NgBoaGg0+x/54sWLAKCrq1tYWCibbEgacMCTwqutrd2wYQMAbN++vdl350eNGjVr1qzq6uotW7bIJF2bw2az16xZAwBbtmyhupgEcHJymjhxYnFxsbe3t0zSIemgu44jce3duxcAzM3Na6mFjJqTlZXV7GM7JLLAwEAAMDQ0FPIB9IsXL5SVlZWVlZ8/fy7tbEhK2m3fvp3mQo7EkJ+f/+2337JYrFOnTpmZmQlzSMeOHWtqau7du5ecnLxs2TJqKky5VVJSEhwcHBYWxmQyzczM5D+tk5NTVVXVH3/8MXjwYGEO6dy586dPnx4/fpyWlrZgwQJpJ0RSQXcdR2JZsmQJAMyYMaNFRwke0ig/CgoKjIyM3N3dAwIC+vXrt4la806OrV69GviPOeOnqKhIT08PAMLDw6UUDEkVllEF9vTpU+plmNcN120XDr8XbORKaWkpd1jlzZs3u3XrRm8ewbhjzkRYYt7Pzw9aOBEXkh/YxaSoCCGrV6/mcDgeHh6mpqYtPXz+/PmjR4/Oy8vbs2ePNOJJRMeOHSdOnEh9VlVVVVFRoTePYGvXrq2rq3NzcxPy63xDP/74o4WFRUZGRkBAgDSyIemiu44jEZ0+fRoAunTpUspvIeLmJCYmKtCb3fPnz1+7di3dKfgKCwsD4cac8RMdHQ0AWlpaHz9+lGw2JG1YRhVSVVXVV199BQB//PGHOOeh+jScnJwkFUxKDh8+PGDAAJF/YUgbi8WivhD4+/uLc56pU6cCwLJlyyQVDMkGllGFJKlJ1Llvdt+8eVNS2SSrvr7e09PT0tJSnu/RqLlEhR9zxk96erowE3EheYNlVPFwB35KZOoQanZnCwsLOXyzOz8/f8KECYMGDbp7925iYmJiYiKLxaI7VGN5eXkdO3YEgBs3boh/trVr1wLAqFGjcP16BYJlVPFs3boVAL777juJnK26uppaqFIiVUCyoqKi7L706dMnukM1tnHjRgCYNm2aRM5WUlLSuXNnwJmfFAqDECLzbi0kFkJIaGjo2LFjufPbi+nWrVsqKirjxo2TyNnaGhaL5efn5+zszJ3fXkxnz54lhMyZM0fO3zVAXPgWk9wJDAykOo54vpWUl5e3fv36rKwsZ2dnZWVliVyxsrIyNDQ0Pj5+/PjxPBscPnz4zJkzampqvXv3lsgVFciZM2euXLnCYDCoPr1GCgsLDx48yOFwpk2b1q5dO4lcsX379o8fP05JSaGm42oqNDQ0MjJSTU2te/fuErkiEhe9N8OoKaq7dtu2bTz3cteOl2C39eXLlwFAwOD20aNHA8D+/fsldUUFQs1AuH37dp57U1JSqB9HRUWFpK544cIFAOjZsye/BiNGjAAAPz8/SV0RiQmH3yOEkFiwjCKEkFiwjCKEkFiwjCKEkFiwjCKEkFgkM2IGSdzFixdfv37ddDuTyZTSFUtLSxcuXMhzV1pampQuqiiioqLKysqabi8qKpLSFcvKyvgt9JKdnS2liyLRYBmVU6mpqampqbK8YnV1NTUJKWoqPj4+Pj5elldkMpm+vr6yvCISGZZROeXm5rZy5cqm2zMzM2fOnCmNK+rr61+7do3nruXLlycnJ0vjoopi3rx5c+fObbo9Kyvrhx9+kMYV9fT0jh07xnPX5s2b8fuBXMEyKqcMDAx4zv6rpqYmpSuqqKgMHz6c5y4tLS0pXVRRmJiYODg4NN3+4sULKV1RXV3dycmJ565ff/1VShdFosEuJoQQEguWUYQQEguWUYQQEguWUYQQEguWUYQQEgv21MudIUOGsNlsfmsma2pqUlO3SXC14c6dO9va2urr6/NrYGVlpaysbGhoKKkrKhAjI6OBAwcaGBjw3KumpjZw4EAAUFKS2B2JlpaWiYlJt27d+DUwNDQsKirS0dGR1BWRmHD2e4QQEgt+qUcIIbFgGUUIIbFgGUUIIbFgGaUHISQiImLixInUuuQAUF1d7eHhYWhoaGRktGHDBjabTW/ChjgczqVLl2xtbf38/KgttbW1J0+eHDly5OnTp+nNJnEZGRmLFi2ysrKys7N78OAB3XH4qqiosP9SbGws3aHaKOypp0dQUNDff//drVu3rKwsaktgYGBhYWFKSkplZeX48ePNzMy+//57ekNyeXt7f/jwQUtLKzMzk9pCVX9lZeXc3Fxao0lYQUHBqJwHTP4AAAJjSURBVFGjfvjhh23btpWWlvbs2ZPuRHypq6vv2bOH+lxTUzN58uSuXbvSG6nNwp56Oh09evTWrVvUSpAAwGazqUV6161bV1VV9dtvv9GarrFt27YxmUx/f3/ulsWLF/fv33/Dhg00ppIsX1/f2NjYmzdv0h2kZX7//fewsLDw8HC6g7RR+KVejnAXOn/9+rWJiQm9YdqmlJQUS0tLHx+fefPmHTp0qL6+nu5EzSOE+Pv7r1u3ju4gbReWUblz9erVJ0+eLFmyhO4gbdHHjx8vXbpkYGAwZ86cP//808vLi+5EzYuIiFBRUbG1taU7SNuFz0blS1xcnJub25UrVzp16kR3lrZIV1d36tSpy5YtAwAWi/XLL7/s2rWL7lDN+M9//tOanqsoIrwblSMBAQELFy4MDw+3sbGhO0sbZWlpye2dz8jI0NPTozdPs5KTk9PS0lxcXOgO0qZhFxM9srOzfXx8Xr58+eHDB3t7+9WrVwcHB//6668zZsyg+lv79OmzceNGumN+9uzZsyNHjiQkJNTV1Y0cOdLLyys9PT00NPTOnTs6OjqDBw/29/dXV1enO6YE5OfnDx8+fNy4cXp6er///vtff/01ZcoUukMJMm/ePEtLS7wbpReWUXqUlpZGR0dz/zhmzJj09PRPnz5xt+jp6U2YMIGOaDzk5uY2HEE5adKkgoKCp0+fcrc4OjpKcKoUehUVFYWHhxcXF0+ZMsXc3JzuOIIQQoKDg52cnDp27Eh3ljYNyyhCCIkFn40ihJBYsIwihJBYsIwihJBYsIwihJBYsIwihJBYsIwihJBY/h9DF/PuBGJWXgAAAVJ6VFh0cmRraXRQS0wgcmRraXQgMjAyMy4wOS42AAB4nHu/b+09BiDgZ0AAPiDmBeIGRjYlBSDNossCJBWcDRUYgbQBM5AI9fMxB3EMQYSjMUTfB3tLVA1GhDVwKGkAGcxMEB3+RFkB1gGzw5hUR5mQ7CgivMEI1sHICNHhQYQ30HSQbgcRHkfTQYTP0XSYkqzDjGQd5iTrsCCsg5sBKMDGwMDOwMDBwMjEwMjJwMjFwMSswMzCwMyqwcTCzcDCw8DCyyAC0iC+CWQ8AxTwHVX4YD9J9No+EOdkSKO915MVtiD2nhJhO6G4q2Dx47ss9nsdWg0Wn+p8ev+kZVfA4pFtFvtV9nTZg9gyvBvsEwKX7Aex+9gkHKZnQ9jVzfoOavnLwHoZ8g/azz5YBFbPeI/JnvMbhG0f3r3/Oj9E/YLVrAcWfF0MZp9glz3gtWAdWK8YAABte94dsX3gAAABVnpUWHRNT0wgcmRraXQgMjAyMy4wOS42AAB4nH2T227DIAyG7/MUfoFGtjGny6aptmlqIm3d3qH3e3/NpkshEh3kApuPH3zIADY+5vfbDzwGz8MAgP98OWf4dog4XMAWMJ1f3hY4XY/T5jmtX8v1E0iAnJ7RuWeP1/WyeQhOQGOKQRXhgKNQIqenRiyjHuUCIqGYd8TEEmKHc7Cql0QegiF2BUUFdT8yhT9Fl7qK3kAafUoPSe+6kkHvLpKoqL32mWSEV9120Vswqs3J9R+ZFOQdKL4L5gJG4S09xN2bCcvVnogLmCU9AUlBbMGMfZAVPFiwKWyPpH402g6K8g7F3Efljmq4W3l8/6HnZd511L3HpnWZa4/Z5NpJZsbaMGam2hZm5lp8PQmuVthMagpZbKr1IhWUWhVSQd8kn9UOTY7JbuAml8XhmowVh7TRtrGZvf17uh5+AQqStl8d9kc/AAAA93pUWHRTTUlMRVMgcmRraXQgMjAyMy4wOS42AAB4nFWPu24DIRBFfyXlroTRvIDZiVK5cWWnt1ykSBltFLn0x2cAyeACmHvmdbmebsflerqt7TouH5f18gKeoZ+3x3LACKo5+EuKhcO7R0k1HCAKJuZKaKqBrRNJnAN4IlHOxRHEQtgR60CgARtyABFF+uRc6mTPIEjrIWk9vhyRnGyilFvPE2zQK7TkPkSxD+GSpLvj+gOagNusoAj1NdjcruHrvv98/u2/BrGG5/3+HRENhxKjKUXGk2KTodjSEMnyEGRlajIdYrNtyoDhZMPVZCMbTj6K4eRDH//c+n6cx4f6FAAAAABJRU5ErkJggg==", "text/plain": [ - "" + "" ] }, "execution_count": 3, @@ -121,7 +122,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAIAAADCEh9HAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3de1xM+f8H8PdMM93TDUmSUrmUJV0IReG7IZbdbC4VaxdhJaTCKr5fknXLWmtj+Qo/u5us1ZfdteWeVVRYXUgSXaT7TDXdpvn8/jht26amqbmcmXo/H/0xnfM557y21btz+Xw+h0EIAYQQQt3FpDsAQggpNiyjCCEkFiyjCCEkFiyjCCEkFiyjCCEkFiyjCCEkFiyjqJvS0tL27Nlz69YtuoMgRDMW3QGQQmpsbFy8eDEAcDicyZMn0x0HITphGUXdsWfPnhEjRhgZGdEdBCH64UU96rKsrKzDhw/v37+f7iAIyQUso6hrBALBZ599tn37djwVRYiCZRR1zbfffltcXDx9+vScnJzKysqKioqKigq6QyFEJ7w3iromJSVFU1NzwYIFAJCfn89gMEaPHu3r60t3LoRow8AZnlC3bdy4UUVFJSwsjO4gCNEJL+pR940ePdra2lp6+79+/bqnp+eVK1dalvzf//3f1KlTJ0+e/PXXX0vvuOKoqqravHmzm5vb559/npOTQ3ccJAt4UY+6z8fHR3o7//TTT0tLS1+9evXs2bNZs2YBwLVr1/z8/M6cOaOlpeXt7a2pqbl06VLpBeie+fPnM5nMoKCg+Pj46dOnP3v2jMXC37IeDi/qkVzz9va2sbHZsGEDAHz00UejRo3avn07AJw8eTIyMjIpKYnmfP9UXFxsYGDw6tWrwYMHA4ClpeWBAwfc3d3pzoWkCy/qkcLIyMiwt7enPtva2qanp9Ob510sFovJZPL5fOrbIUOGPH/+nN5ISAbwcgMpDC6Xq6GhQX3W0tLi8Xh8Pl+uLpn19PQ+/fTT2bNnz5w58/Hjxw8fPnRxcaE7FJI6OfoniJBwBgYGpaWl1OeSkhJ9fX25qqGUyMjIuLi4wsLC5cuXL1261MTEhO5ESOrwoh4pjIkTJ169epX6fPXq1UmTJtGbp10MBuNf//rX0qVLVVRUUlNTHR0d6U6EpE7u/pgjeVdTAwkJkJsLVVXQty+MHAm2tqCkJPHjpKSkxMfHp6enV1RUNDY2btiwYd26dfb29hoaGlpaWocOHYqPj5f4QcX3ww8/cLncmpqar7/+euPGjaampnQnQlKHZRSJrLwcQkLgu++gvv4fyw0NYds28PUFBkPix/T09Gz5bG5u/vDhw+jo6MbGxsTExJEjR0r8cOIzNja+cuUKIeTYsWNTp06lOw6SBezwhERTWAjTpkFmJrDZMGcOTJgAmppQWAi//AIPHgAAeHvDqVPAxNtEqNfBMopEIBDAtGlw4waYmMCVK2Bl9Y+1J07AypXQ1AR790JAAE0REaINllEkgsuXYfZsYLHgwQMYM6adBtu3w44d0KcP5OeDlpbM8yFEJ7wEQyI4eRIAYNas9msoAAQEgKYmcLkQEyODONnZ2SkpKW/evGl3bV1dXUpKSkpKikAgkNQRq6qq0tPTs7KyOmqQm5ubnp5eVlYmqSMiBYJlFIngjz8AAGbO7LCBpiY4OwMAJCTIIM7atWvt7OyOHTvW7tqXL1/a2dnZ2dnV1NRI6ojXr1+3trYW8tYpHx8fa2vrk9TfG9TLYBlFnamqgrdvAQCGDRPWjHpu/uKFLCIhJE+wjKLOVFY2f9DWFtZMRwcAAGfCR70PllHUGTa7+UNTk7BmDQ0AAMrKUs+DkJzBMoo6o6PT3K++pERYM2q0u56eLCIhJE+wjKLOqKo23xV9/FhYs0ePAABGj5ZFJITkCQ4GRSJwdYWnTyEmBoKC2m/w+jUkJgIAyHD448uXL69du9ZeltdSOmJjY2NCB10RuFyulA6K5B+WUSSClSvh6FFIToboaPj443YaBAWBQACWljB9usxCRUVFRUVFyexwAFBWVubk5CTLIyKFgGUUieC992DNGvj6a1i6FOrrwcvr71lIqqshIAB++AEYDPjmG1mOqXdwcGiZDL+1ioqKc+fOSeOIampqixYtanfVlStXioqKpHFQJP+wjCLR7NsHRUUQEwM+PrB9O0yYAFpaUFgIN28ChwMsFhw9KssregCYOXNmaGjou8szMzOlVEa1tbW/++67dlc5OztjGe21sIwi0aiowI8/wvffw9698PgxtLw6WFUVZs+GHTvAxobWfAjRBssoEhmTCYsXw+LF8PYtvHwJ1dXQrx9YWIC6Ot3JEKITllHUFTdvQlISTJkC48c3Lzl7FgoKwMsLjIxoTYYQbbDfKOqKX3+F4GC4devvJd98A8HBILU+RgjJPyyjCCEkFiyjCCEkFrw3ihTPmTNnamtrtTuYccrCwuL169d8Pl9TU1NSR3R1dc3KymKxOvx9OXfuXG1tbb9+/SR1RKRA8GwUdQX1ypnWbwB9d4n09e3b19jYuE+fPu2uZbFY2dnZ7u7uFy9elNQRg4ODQ0JC2C2TXb1j0KBBFhYWOtRsgaiXwTKKeqDMzMyMjIyAgIC6ujrx95aenn7s2LGYmJjKlqlXEWoFyyjqgVauXPnee++9fPny4MGD4u9t/fr1fD5/zZo11tbW4u8N9TxYRlEPpKSkRBXQsLCwwsJCcXZ14cKFuLg4PT29bdu2SSgd6mmwjKKeydXVde7cudXV1Vu3bu32Turr64ODgwFg586d+vr6kkuHehQso6gr5OMRk4j279+vqqoaFRV1//797u1h37592dnZVlZWy5cvl2w21JNgGUU9lpmZ2bp16wgh/v7+hCr3XVFUVPTll18CwMGDB4V0dUIIyyjqybZu3WpoaHjv3r3vv/++q9sGBgZyudyPPvpougznokaKCMso6sm0tLR27doFAIGBgTU1NaJvmJiYePbsWRUVlfDwcKmlQz0EllHUwy1ZssTBwaGgoIC6QhdFy32AgIAAc3NzqcZDPQCW0e7LzMzctm2bv7//xYsXu3HrTRHl6ermOzoWtBpkWWxiUj52bJUM3x3SVUwmMyIigsFg7N2799WrV6JsEhUVlZSUZGRkRD2m70nu3Lnz559/tnxbWFgYFRV17ty5Uur92Khb5Pdfv5x78eLFxIkTBwwYMGXKlNDQ0AMHDtCdSBYOlZcb37v3Q6ur49m5ufqpqZny/VfE0dHR09OztrZWlLLY0kcqPDxcgqPyaffrr7+OHTt2zpw5hw8fppbEx8dPmjTp/v37165dGzZsWFZWFr0JFReW0W66d++esbHxmjVr5s6d+8knn8TFxdGdCAmzd+9eDQ2NH3744fbt28Jb7tq1q7CwcPz48YsXL5ZNNtkwNDS8ePHipk2bWpaw2exffvnlyJEjJ06cmDRp0k8//URjPIWGZbSb7O3tc3Jydu/eXVBQEBMTs3DhQroTIWEGDRoUEBAAAP7+/gKBoKNmOTk51B2AQ4cOMeSyM2y3jRkzxsTEpPWSyZMnDx8+HABKS0v//PPP9957j6ZoCg/LaDdZWFjMnj371KlTQ4cO5fF42CdG/gUFBZmYmDx8+PDUqVMdtdm4cWNdXR31VEqG0ehkY2MzaNCgqVOnzpw5k+4sigrLaDcdOHAgLy8vLS3tzZs3tra2bm5uQho3EtLRl0C+7yq2QT1Ja32a1noJj8cLDQ2dMWOGr69vTsurQ+WGmpra7t27AWDz5s0cDufdBtevX//55581NTWpPlK9RGpq6pMnT5KTk48fP053FkWFZbSbUlJSXFxc2Gy2rq7upk2bnjx5Ul9f327LWoHAMTW1o68vXr6UcXLp8fX1TUhI2LRpk5aW1pQpUzr6gdBowYIFTk5OxcXFYWFhbVY1NTX5+/sDwNatWwcOHEhHOlE1NDSYmpqamppmZma22+Do0aOmpqZeXl6i7I3BYFhYWMybNy8+Pl6iMXsRLKPd5Obmdvr06Rs3bmRmZu7atcvV1VVFRUX4JoNUVIaoqrb56qesLJvA0vb27dsff/zx1KlTrq6ue/fu1dbWlsNHFtRNT6oLVJsH00ePHn3y5ImZmRlVTOUZISQ3Nzc3N7ejP1SVlZW5ublv3rxpvbC2tjYnJ6eiooLL5ebk5NTX1+/cuXPv3r2VlZX5+fmXLl0aPXq0TOL3QDhSuJuWLFmiqqr67bffcjgcOzu7lk4kQnxlYTG4s1KruDIyMgYMGGBsbEx96+jo+OTJEzl88mZjY7NkyZL//ve/gYGBP//8M7WwoqJix44d8NdsJrQGlJa0tLRVq1ZRnz/++OOoqKilS5cGBgZaWVmpqKh4eHi0foiPugTLaPd5enp6enrSnUJeVFZWamlptXzbp0+f8vJyGvMIsXv37gsXLly6dOnq1avvv/8+AISEhJSWllJz69GdTlrs7e2Tk5PbLDx37hwtYXoYvKhHXSDkEVO/fv1a182ysrL+/fvLPqEoDAwMNm/eDAAbNmzg8/kZGRmRkZFKSkoRERF0R0MKCcsokgxra2sOh0M99BAIBLdu3Ro3bhzdoTq0YcMGCwsLqoCuX7++sbFx1apVo0aNojsXUkh4US87L2prq5uaWi9RZTDM1NToyiNZOjo6vr6+np6e/v7+V69e1dbWnjFjBt2hOqSsrLxnz54PP/wwODi4urpaV1d3+/btdIdCigrLqOxsevGizRIzNbXokSNpCSMOHo/n5uZWV1e3YMGC1sv37t179uzZpKSksWPHRkZGMuV4vhIAmDdv3rhx45KSkgBg69ativiOECcnJyUlpXeXy2FXs54Ny6jsjOvTR+2flcVQMXs7/ec//6mvr2cymbdu3Wr9sngmk+nj4+Pj40NjNhFVVFTs2bMnNTVVWVm5oaEhPDycxWJ9/vnn7VYluaWiotLutPxN/7zoQVJHkJTxmppsk5Ntk5Nf1dXRnUUsKSkpQ4YMof7ZqKurz507V0dHBwAYDIaPj09FRQXdAUXS2Nh45MgR6txTSUlp/vz5LeM+7ezs7t69S3fAztXV1VGBHz582G4DanCBq6urjIP1WnJ92dV71HY8WYY8KCsrW7dunYODQ25urr6+fkREBJfLvXjx4osXL/z8/JhM5unTp4cOHXro0CE5Pw+6ceOGra3tmjVrysrKXFxcUlJSoqOjk5KSYmNjTUxMkpOTJ06cOHv2bBGnJUWoGd11vOfr9GyUy+e///jxrtzc8sZGGWfrVENDQ0REhLa2NgCw2Ww/P7/Kyso2bR4+fOjs7Ez9cxozZsytW7doiSrc8+fP58+fT4U0NjaOiopq06CmpqZlglF1dfXQ0FAej0dLVCEEAkFtbS2ejcobLKNS12kZvVZe7pCSYpuc7ProUXRxcZNAIOOEHYmLixsxYgT1Gztt2rT09HQhjWNjY01NTanG7u7uOTk5MsspXHV1dWhoKDU2SUNDIzQ0tLa2tqPGeXl53t7eVMfYQYMGRUVFCeTmf0dqaqqzs7Ovry+WUXmDZVTqRLk3+rK2du3z51Szj9LS7nI4skz4rqdPn7ZMmzZs2LArV66IshWPxwsPD6fGMqmpqQUFBXG5XGlHFUIgEERFRQ0YMAAAGAyGt7d3YWFh6wYcDuf27duPHj1qUytv3rw5ZswY6j9/8uTJHVUrmSkqKvr000+png+GhoYlJSVYRuUKllGpE/0R063KyjlPnlCN/Z8/z6fjkVR5ebmfnx/1/FdXVzc8PLy+vr5Le8jLy1u4cCF1QjfJykpw7hyh5YTuzp2P//pLMGHChAcPHrRZHxsba2hoOHfuXGtr66lTpzb+845KU1NTVFSUgYEBADCZTG9v76KiIhmmb9buTRU8G5U3WEalrktP6hsEgnNv3zo/fGibnDw+JWXv69fVfL4MQhJCGhsbIyMj+/XrBwAsFmvFihXFxcXd3tv9+/cdHR0fOTsTAGJvT/74Q4JRO5GfT7y9CYMR6+BgZGTU0YU51eGJENLQ0DB48OCff/753TYVFRVBQUHU3F06Ojrh4eF1MvzbFhcXN/KvbsWtb6pgGZU3WEalrkkgSKisTKisrG1qEnGTkoaGXbm59snJtsnJ7z9+fKGkRNQtuys+Pr5lKKSrq+vjx4/F32dTU1PTyZNkwAACQJhMsmwZefNG/N0KU1NDQkOJujoBIOrqJDS0tqZGlO2cnZ1PnjzZ0dpnz565u7tTPxxLS8v//e9/kkvcPuE3Vfh8/oEDBw4cONDR37n79+8fOHAgJiZG2jkRBcuo/MqoqVn29Cl1JuudkfGoqkoaR8nKymp5hG1ubh4dHS3hA1RXk9BQoqJCAIiGBgkNJVI6oYuNJUOGEAACQNzdycuXIm5XXFzcp0+frKws4c3i4uKsrKxazg3T0tLEDdye8vLyoKAgZWXlbt9UQbKHZVSuCQi5XFrq9vixbXKyXXLyv1+8KCgokNTOq6qqQkNDqStW6hG2FK9Ynz8n8+c31zhzcyLZYp2SQpycmnc+diy5fVv0TWtra52cnDZs2CBKY1G6f3Vb65sq1N1YcW6qIFnCMqoAapuaIgsKHFNTF549S3VpFNJlRxTvPj95I+3Lbcq1a2TUqOZ6N3Uq+fPPdsORn34in31GnJ3JmDFk4kTi5UXOnGn/HLawkKxYQZSUCADR1ycREaQrt5IrKytnzZq1ePFifle2Ki0t9fPzo4aNUoMRurR5u65duybxmypIZrCMKoz8urpFS5ZQv2lmZmYXLlzo3n4SExNbprBzcHC4d++eZHN2orGRREaSvn0JAGGxyIoVpKTk77Xp6cTaurnOtvkaMoTcufN3y4YGEhFB+vQhAITNJn5+pIsnhpmZmVZWVkFBQU0i37NujerFSf0YbWxsbnflFLi11uMCpHJTBUkfllEFc/369Zb3iU+ZMuXRo0eibytHfctLSoivb/NZZN++JC+PEEKePyd6egSAmJmRkydJfj5paCBFReTHH5vPYVVVSUICIYTU1BALi+by+sEH5PnzbkSwtrbu27ev2V9CQ0O7sZPY2NiWeQbc3d1finxDlvw1LqD1TRUxLzIQXbCMKh7qkpyaW566JH/79q3wTWpqakJDQ9XU1KiRjkFBQVXSeWDVNZmZxM2NTJvW/O2ECQSA2NiQ8vK2LXk84uJCAIipafPV/fLlZPhw8ssvMg3cHmrQATWKlBp00OnPlvo/2HpcgIxuqiDpwDKqqFo/0qW6NLb7SFcgEERHR5uYmFC/sfPnz8/NzZV9WmGokU63bhEAwmCQjm4L5ucTVVUCQE6fJoSQqioiT1MQ5Ofnt5zpC+msSghJSkoaP348bTdVkBRgGVVsrTsYWlpaXr58ufXaBw8eTJw4kVpra2t7p/W9RXnj708AiKOjsDaengSAzJ0rq0xdJrxEtr6pIrzUIsWCZbQneHe4S0FBwYoVK1pGYUdGRnbvQYrsTJxIAMjGjcLafPUVASBGRrLK1B3tjiJtM32UvNxUQRKCZbSHqK+v//LLL6m56NlsNjWhkaqq6ubNmxXjN9bMjACQiAhhbS5dIgBESYmeQfpdUVlZuXHjRuqWi6amZt++fambKgsXLnz9+jXd6ZCEYRntUUpLSxcsWMBkMlksloODw4sXL+hOJDJqzOixY8LaxMU1P50XbYgn7bKysmbOnMlkMtlstoWFRbc7RSE5h+9i6lH09PQKCgoEAoFAICgvLx80aJCIG/7222/79++nPltaWh45ckRqGTugpQVFRVBTI6xNdTUAAJsNMn+daklJSURERFZWlpmZmZ+fn5GRkShbWVhYqKmpUf872Gy2o6OjtHMiWuBLRHqU77///s6dO/3797ewsMjOzha9Gj569MjAwCA8PDw8PHzdunVSDdm+AQMAAF6/FtaGereHoSEwGLKI9JfGxkYXFxd1dXVfX18ejzd9+nQRN7xx48aFCxfU1dWHDBmSkZFx/PhxqeZEtKH7dBhJDI/Hozo2nThx4vLlywDQp08fEWfJXLt27Z49e6SdUJiNGwkAGTdOWBtqVL6Hh6wy/a2ll1hBQQEAiDKUns/njx49GgB27twZExMDAHp6eqWlpVJOimiAZbTnCAkJAQAbGxvqofyMGTMAwNfXV5RtPTw8PDw8li1b5ufnl52dLeWk7UlI6KTfaEFBc7/R77+XbbJmHA4nLS1t2bJl8+bNE6X9N998AwCmpqbU2CTqHNbf31/KMRENsIz2EK9fv1ZXV2cwGC3PMTIzM9lstpKSkigDRuPj46Oiov7444/g4GADAwMJTlzUBdQoJnt78u6rR+rryYwZzbNDNTTQkI2Qy5cvOzk59e/f//z58502Li8vp57Ot0z6mZaWxmKxWCzWkydPpJwUyRqW0R7i448/BoBFixa1Xkjd5XRxcenSrkxNTS9duiTRdKJ59ozo6BAAMmIEuXCh+XF8fT25epWMG9c8pp7u98jn5OSoqKh02mmp3Z+8r68vAExrGfyKegosoz1BQkICg8FQU1NrM9Cz5Zyo0+mgWsZ083g8fX192rrmPH7895wjAM0TOFFfRkbk5k16UhFSUVFBfRAIBLq6usLHg2VkZLR7HVBWVqanpwcAbQabIUWHZVThNTU12dnZAcCOHTveXdvmDl276urqhg4d6uHhsXv37kmTJs2YMYPOQYoNDSQqinh4EGtrMmgQGTmSzJ5Njh6lsa9odXX14MGDd+zYERsbu2LFCjMzM+FTMbm5uQHAqlWr3l114MABADA3N5flO52QtGEZVXiRkZEAYGxsXNNeoeHz+dTEemFhYUJ2wuVyo6Ojw8LCLly4IP4kxD1Pbm7uli1bvLy8QkJChHd+iI2NBQBdXd2S1vOo/qWxsZF6E8n+/fulFhbJGpZRxcbhcKj51n788ceO2ly/fh0ANDU1JfgCEtSu+vp6S0tLAIjoeFTr77//TvVFw8nxegzsfq/Y9n3zTVFRkbOzc8sM6u9ycXGZN29edXX1rr/GKSEpOXToUFZW1ogRI1avXt1Rm+nTp8+YMYPL5W7fvl2G0ZAUMQghdGdA3fSqrs47M3NwTk7A0KFjxowR0vLFixchd+7kjR79raXlSA0NmSXsVYqLiy0tLTkczq+//krdHu1Idna2lZUVn8+/f/++ra2tzBIiKcGzUQW2Pz+fJxCMtLcXXkMBYOjQoY7Tp/MEgr15efhnU0o2b97M4XDmzJkjvIYCgLm5+erVqwUCAdUbXzbxkPTg2aiiSuBw/LOzNZSUfrKy0mezO23PEwg+TEsrbWz8j6npDD09GSTsVR4+fGhnZ0f1rqdujwpXWVlpaWlZUlJy/vx5Dw8PGSRE0oNnowqJT8jB/HwAWGloKEoNBQB1JnO1kREAHM7PrxUIpJtPErhc7vHjx58+fUp3kM4RQtatW0edXYpSQwFAR0fn3//+NwBs2LCBx+NJOSCSLiyjCumH4uJXdXXGKirz+/cXfSt3fX0rDY3ixsaooiLpZZOIHTt2jBo1asuWLTdu3KA7S+daJtbasmWL6FstX7589OjReXl5Bw8elF42JANYRhVPOZ9/4s0bANhkbMzuypRxTICNxsYMgDNv3xY2NEgtoAQsWLAgOzt78uTJdAfpXG1tLVU9d+/era2tLfqGSkpKVAENCwvLy8uTVj4kfVhGFc/RgoKqpqZJ2toTuvJLS3lPQ+N9Pb16geBwfr40sknKsGHD2KLdrKBdeHj4q1evbGxsli5d2tVtXVxcPvzwQx6P98UXX0ghGpIRLKMKJovHu1RWxmIw1os8s30bfoMGqTGZcRUVqVVVks3WC+Xl5e3bt4/BYBw6dIh6gWBX7du3T1VV9cyZM3fv3pV4PCQbWEYVzL78fAEhC/r3N1FV7d4e+rPZ3gMGtOxKoul6nYCAAB6Pt3DhQicnp+7twdTUdP369YSQgIAA7DajoLCMKpLfKypSq6r0WKxPDQ3F2c8SAwNDZeUsHi+2rExS2Xqhu3fvnj9/Xk1NLSwsTJz9bNmyZeDAgYmJiWfPnpVUNiRLWEYVRr1A8HV+PgCsMjLSUlISZ1cqTOZaIyMA+KagoLqpSTL5JKqoqCglJaWiouL169cpKSlyeJrW0nk+ODiYendLt2lqalKFePPmzdXUa/uQQsEyqjDiKioKGxos1dU/0NcXf2/T9fTGaGqW8/mXSkvF35vE3b59Ozg4mMlkJicnBwcHy2EZPX/+fHJy8uDBgzdt2iT+3ry9vR0cHAoKCg4fPiz+3pCM4SgmRXK7slKXzR4loUHxz3i8Z7W17vr6+Le0GwQCwYkTJwwMDObMmSORHSYmJv7222+BgYHq6uoS2SGSGSyjckRASERBQUdrLdXU3CVxHtrG9YqKjI5H0XxmaKjarQfQii4hISEpKcnc3PyDDz5ot8GhQ4f4fP6CBQtEfGd9p6qrq6OiogBg2bJlampq7UZ6/PjxsGHDpk2bJpEjIklh0R0A/Y0PcO7t247WuuroSKOM3uFw/tfxgyYvA4PeWUZ/+eWX3bt3f/DBBx2V0cDAwIaGBnt7e0mV0bKyss8//xwAPDw82i2j58+f/+qrrxYtWoRlVN5gGZVHgYMHG7zT+byfNLujT9DWbrdGa4j3LAuh3gDLqDyy19Iy7W630O4ZrKLyL11dWR4RoR6jN16vIYSQBGEZRQghsWAZRQghseC9UXn0n9zcNs/HBygrhwwZIr0j3q6szKuvb7NwrZGReXuPjHuPp0+fbtu2rd1VTVIb/RUREaHRXtfgBw8eSOmISExYRuXRnzU1bZZ0eyISERU2NLw7A6mPgYFUDyr/nj17tnPnThkfNDw8XMZHRGLCMiqPvjI3N1JRab2ELeXOm256ej4DBrRZaPzPDL2Qvb19R2M9Fy1axOfzpXHQI0eO9OnT593lZ8+evXr1qjSOiMSEZVQeGaqoSPv0sw0dFsuyd1+/t2vgwIHz589vd5WXl5eUDvrRRx8ZtHcd8ODBAyyj8gkfMSGEkFiwjCKEkFiwjCKEkFiwjCKEkFiwjCKEkFjwSb0cYQLYaGoCgCznpjNSURmpoWGorCyzIyoEPT09U1PTAe90AmthZmZWX1/f7ox23cNisQYOHAgASh3MqqWjozNw4EA9PT1JHeQoTP8AAANHSURBVBFJCk7bjBBCYsGLeoQQEguWUYQQEguWUYQQEguWUXp89dVXQ1uxt7enO1En4uPjZ86caW1tPWfOnIKO37uncOrq6o4fP+7u7l5YWEgt4XK5Bw8edHd3r62tpTfbu1JTU1euXPnbb79R39bV1YWFhc2aNcvLy+vevXv0ZuvN8Ek9PVasWOHt7U19joyMTE5OpjePcDdu3PD09Dxy5Iizs3NOTo6hoSHdiSSDx+M5OTk5ODjcvHmTy+UOHDgwPz9/9uzZkyZNunLlipRmHum21atXZ2RklJWVDR061M3NDQA++eQTJSWlkJCQJ0+eTJ8+PT093cTEhO6YvRE+qaeZQCAYNmzY6dOnHR0d6c7SITc3Nycnp61bt9IdRFr09fXv3r07fPhw6tu6ujo1NTUul6ulpUVvsNb4fD6Lxfrkk09GjBgRGBgIAG/evOnbty+bzQaA8ePHr1692sfHh+6YvRFe1NPs4sWLurq68lxDASAjI6N///7r1q1btGjRTz/9RHecXorFanvtaGhoyP7rfbFlZWX9+/eXeSgEgBf1tNu/f39QUBDdKTpRVFQUHR29atWqhoaGFStWKCsru7u70x0K/S0mJobBYLi6utIdpJfCMkqnBw8eFBUVzZ07l+4gndDV1d25c+e4ceMAIDEx8dKlS1hG5cfdu3f9/f0vXryojEPRaIIX9XTas2fP+vXrOxr8Jz/Gjh2bkJBAfX7+/Hm/fv3ozYNafPfdd15eXjExMfLf2aMHU9q+fTvdGXqply9ffvHFF6dOnZL/kwhTU9O1a9cWFRWdPHkyMTHx2LFj2tradIeSjPPnz1++fPnatWtKSkqlpaWjRo06efLk77//fv36dVVVVQ6HM2zYMLozNsvIyLh48eK1a9c4HA6Hwxk1atSaNWt27dq1Zs2a2tralJSUhoYGY2NjumP2RnhRT5umpqZLly5pamrSHaRzEydOvHfvXnx8/PDhw48cOdK3b1+6E0lYSEhI629ZLJYcvleOy+Xm5OQ4OzsDQE5OTlNTk6Gh4fr16+vr63NycgCgx3REUzjY4QkhhMSC90YRQkgsWEYRQkgsWEYRQkgsWEYRQkgsWEYRQkgsWEYRQkgs/w9n4Cnk9BxnWwAAAVh6VFh0cmRraXRQS0wgcmRraXQgMjAyMy4wOS42AAB4nHu/b+09BiDgZ0AAPiDmBeIGRjYlDSDNzKLLAqQUnA0VGIG0ATOQCPXzMQdxDEGEozFE4wd7Sw6IDiaIDn8idLApKQAZMCuMSNVgTLKbSLbChLAGTrAGRogGNyJ8jaqBCCehaiDC14xgXzNCdXgQ4SY0HUQ4Ck0H6a4iImjRdJgS1sHNwKjAwKLBxMDKwMjEwMTMwMTJwMTFwMzNwMzDwMzLwMrGwMrOwMrBIALSIL4JZDwDFPBFtxzZG/xgux2Ik83uar/4jsA+EPt55kX7yxoQ8Y9SCg6LvYXA4q8eHNor8mOtPYj9LqZs/6JcfrB4K8fbfc8uN+wHsRWddu9fvxPCLvr1cv/l6TvA5vAf4nDYO2cOWK9cy0T7L9sgbFlBBod80cb9ELaDwzJ9CJurL9yhq3sbWK8YAOUhfg7mjP5fAAABX3pUWHRNT0wgcmRraXQgMjAyMy4wOS42AAB4nH2TwW6DMAyG7zyFX6DIdhKHHAt06zQVpK3rO+y+99fsIJogZQs94PDlj3/b7cDWx/z+/QPPxXPXAeA/v5QSPBwidjewFxgvr28LTPfzuO9M69dy/wTyQE7P6HNkz/f1tu8QTHDCHlNIQQB7FxI5PdVjXuUow6q7UZJ4byfIk5fYAJ0qUi9OUEETjLEp6JXjPiA9BXloCga9eUuRNEX6O0XZvCRhF8ImidiUjPBi372wuT6RAtJ2MxhJBzJIk0wbOXBMersaFwzNNAnhqs7JyaDOqWdNtw2SglSD3rVBzoqIZDXPSQ5tOzoQV3AHMnGb9JnUu/c+SjvLyzIfJmqbsXFd5jJj9nCZJNYwlHmxr1LGQlFwpfmkhC8ttpCqRuaYSrvIFLg0Jceuqn3e8FWN9XKIVSktHqqCWZxqt7U3i/f/nr53vwVttrn8B0VlAAABBHpUWHRTTUlMRVMgcmRraXQgMjAyMy4wOS42AAB4nE2PMWsDMQyF/0rHO7gaSbZkSyFTIGRKuocMHTqWCyVjfnxl34ENxrz3+dl6vl8ep+l+ecxtG+TtNB1vDs6zr/PHe6IAgJCWT3RRUl4OFBhQnEDAREUcxTGk1EiU4gRCZOEYlwMGibKTnCuhgB5KCwaiyC3SQaoJCFlU0j4LU53lEpSVWdpTijW4QawQN9iYij/M222A/XYSUs+1rlI/5KqyHbFsqFDWNkKg9p+X79f6+/W3Pg1Cldf19RMQDbuLRsMRWRxctNQdGXejJkMOLA/OSjdg2k0yHGqw4VBDDIce2XDoUd7/sJF/5Bx72HIAAAAASUVORK5CYII=", "text/plain": [ - "" + "" ] }, "execution_count": 4, @@ -147,7 +148,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAIAAADCEh9HAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3dd1xUV9oH8GeG3qRKEVAERCkKKpYgNpRgVIKuGmMUI+paXhGIYTWSBNSEBNTFUTdRdAmimMSKimuygbhqEBvFhhQFg1RpI21gGGbO+8c1xMAAw7Q7A8/34x/jvefO/eE4D7edcxiEEEAIISQuJt0BEEJIuWEZRQghiWAZRQghiWAZRQghiWAZRQghiWAZRQghiajSHQApsefPnycnJwPAO++8M2LECLrjIEQPPBpFYrp69aqnp2d1dXVFRYW7u/vdu3fpToQQPfBoFInJ2Nj44sWL7u7uAFBfX3/s2LGJEyfSHQohGmAZRWJydXXteK2jo8PhcGgMgxCN8KQeSaqhoeH06dMLFy6kOwhC9GBgn3okCR6PN3/+fEtLy++++47uLAjRA49Gkfhqa2t9fX1NTU2PHj1KdxaEaINlFIkpMzPT3d3dwMAgODj4/v37ubm5dCdCiB54Uo/EtHPnzrS0tI6/2tnZHT58WEb7un79elxc3IYNGzw8PACgqakpKirq3r17JiYmQUFBkyZNktF+xdDS0nLixIknT56wWCxqyb17944cOcJms6dMmbJp0yZ1dXV6EyKpwzKKFN17773X3NxcUFDw2WefffjhhwAwf/78MWPG+Pn5PX78+KOPPiooKDA3N6c7JgDA/fv3P/jgAzs7u/T09NraWgDIzMx89913o6KirK2tQ0NDZ82aFR0dTXdMJGVYRpGi4/P5Kioq8+bNe++996gyWlNTY2JiQq01MTG5cOGCp6cnrRlfa29vZzAYz5498/DwoMpoe3t7SUnJ8OHDAeDcuXMRERGPHz+mOyaSMnxuFCk6FRWVTktMTEyam5sfP36clJRkb2+vOI/9q6p2/kKpqqpSNRQAXr161VH9UX+CZRQppfLy8ujo6AcPHixbtqxr8VJAXC734MGDoaGhdAdB0qcE//8Q6mrEiBHnz5/ncrlOTk6TJk3y9fWlO1FPeDyev7//mDFjli9fTncWJH34wBNSPuXl5dQLDQ0NCwuLsrIyevP0rKKiwsvLS19f/7vvvmMwGHTHQdKHR6NIXDU1kJ4O1dUgEICJCUyeDBYWstjPzZs309LSCgsLr1y5Ul1dHRoa+sEHH1haWnp7ez969CgvL2/+/Pmy2K94jh07VlJSwuVyjxw54ubmpqKi4uvrO3To0AkTJlAdvdauXctk4uFLv4JlFPVdbi5s3QpXroBA8OdCBgNmzIDdu8HdXRb7DAgI6Hj9008/HT9+PDs729zcPDs728rKShZ7FM/vv//e2toaGBhYVFQ0dOhQTU3NlStXAkBRURHVAJ+N6X/wgSfUR//7H/j5QWMjGBjAwoXg7AxMJuTnQ1ISVFWBhgYkJsLixXSnREh+sIyivigvhzFjoLYW5syBkyfByOjPVY2NsHo1nD0LWlqQmQmOjvSlREiu8BoN6ouvvoLaWrC3h/Pn/1JDAUBPD77/HsaOhZYW+PxzmvIhRAM8GkUi4/HA2BgaG+HwYVi/Xnib8+dh0SJQVYWKCpDxo+YCgYAaD8Xe3l5DQ6Nrg+rq6qqqKj09vaFDh0prpy9fvmxqajIwMDA2Nu66tr29vbi4GABsbGy69hpA/RUejSKRPXgAjY0AAHPndtvmnXdAVRXa2+H2bVnH4XA4Li4uLi4uhYWFQht88803Li4uGzZskOJOAwMD7e3to6KihK4tKyuzt7e3t7evqamR4k6RgsMyikT29CkAgK4uWFt320ZLC2xs/myM0ACAZRSJrL4eAMDAoJdmhoYAAGy2zPMgpBiwjCKRURf7+PxemvF4AABqajLPg5BiwDKKREbdmq+r66WSUpcFO93HR6j/wjKKRDZ6NAAAlwv5+d22qa2F0lIAgDFj5JQKIbphZ1AkshEjwMoKSkvh/HlwchLe5tw5AIBBg2TUJVSorKysurq6rstfvHghoz1WVlbeu3dP6HIZ7REpMiyjSGQMBqxbB+HhsG8frF0LXeftaGiAL78EAFi1CrS05JbL399fbvuiJCYmJiYmynmnSGFhGUV9sWULnDgBT5/C7Nlw6hQ4O/+5qqgIli+HkhIYMgQiIuQZavHixQbCnh/IysrKysqSxR6dnJzGjRvXdXlzc3NSUpIs9ogUGZZR1Bc6OpCcDHPmQE4OuLrClCkwejQwmZCbCzduQFsbmJlBcrKc7y/t3LnTSdhFhh07dsiojM6dO3fPnj1dlxcXF2MZHYCwjKI+GjkSMjPh668hIQFu3IAbN14vNzSEtWshPBzMzGjNh5C8YRlFfWdkBHv2QHQ05OZCZSXw+WBuDs7OgL3I0YCEZRSJ5cwZYLNhyZLXl0dbWyEuDjQ1YeVKupMhJG9YRpFYIiIgNxemTn3d9bOxEdavh8GDsYyiAQgfv0cIIYlgGUUIIYngsM1ILE5OkJsLT568niykuhpMTWHwYKiqklsEQgg1T9zQoUPVhI2Ewmaz6+rqNDU1LS0tpbXTkpKShoYGExMTM2EPJPB4vIKCAgAYNWoUDts8cODRKBIL9duX1lnXGQyGnZ2dnZ2d0BoKAIMGDbpw4YKXl1c9NcSfxJqbm+fPn3/16lWTbgb2V1NTc3Z2dnZ2xho6oGAZRdKgAFW1KxUVlUuXLhUUFHxJdVGVWFRU1MOHD48dO8ZQsJ8U0QvLKOrPWCwWk8k8cOAAda4tiZKSkpiYGAaDsX//fiYTvzjoT/i/AfVnY8eODQgIaGtrCw0NlfCttmzZwuFwli9f7unpKZVsqN/AMor6ua+++kpfXz85Ofnnn38W+03S0tLOnTunra0dGRkpxWyof8AyisSikBdDhTI1NQ0LCwOALVu28KgJTvqIz+cHBgYSQrZv3y7FuZpRv4FlFEmDYlfVkJAQBweH3Nzcw4cPi7H50aNHHzx4YG1tvWXLFqlnQ/0AllHU/6mrq+/evRsAIiIi+jqD/KtXr8LDwwEgJiZGW1tbJvmQksMyigYEPz8/Hx8fNpu9c+fOPm24c+fO6upqT0/PRYsWySgbUnZYRtFAERMTo6amdujQoUePHom4SV5e3jfffKOiovKvf/0LnxVF3cEyKj4+n3/mzJkDBw50LOFyuceOHTt+/DiNqeSjys6ubty4lj8en2wDqBs3rprqGKqonJyc1q1bx+fzQ0JCRNyEuiv197//3dXVVabZ6HL79u34+PjU1FSBQEB3FmVGkFhu3brl6Ojo7u7u4OBALbl8+fKIESNcXV29vLzozSYHDg4OAJCfn0/9taKiAgDMzc3pTdWruro6Y2NjALh48WKvjZOTkwHAwMCgqqpKDtnk76OPPnJzc4uMjJw9e7aPj49AIKA7kbLCMiqmhoaGpqamtLS0jjLKZrNbW1t//PFHLKOKjDp7sLOza21t7aEZl8ulfkYWiyW3bHKmr6+fnp5OCGlsbASAFy9e0J1IWeFJvZj09PR0dHTeXGJgYKChoUFXHiSijRs3jh49urCw8M2rMV3t37+/oKDA0dHx//7v/+SWTc5sbW1jY2Obmppu3LhhY2NjampKdyJlhWUUDSyqqqr79u0DgC+++II6iO6qqqqK6q1E3ZWSaz45+vbbb3/44QcrK6tly5bFx8fjQYDYsIzKCZ/Pb29vJ92M7koIaW9v5/P5ck4lory8vMDAwMTExI4l1A+ipDevZ82a5evr29jY+PnnnwttEBYWVl9f7+vrO2fOHDlnk5vGxsYlS5Z8//33eXl5H3/88YIFC/Ly8ugOpaxwLiY5cXV1zcnJiYuLW716dde1//3vf9955x1DQ8O6ujr5Z+vZF1988dNPPwEAk8lcsWKF0DZKV1X37dv3yy+/xMfHr1+/fsKECW+uys7Ojo+PV1dX37t3L13x+mRtfn51N51c7TQ1Y+ztha7KzMxsbW2lHoYNDw9PTU1NSUkZNWqUDIP2X3g0KiZCSGpqakZGBofDSU1NLS4ubmlpSU1NffToUV1dXWpq6suXL+nOKB1hYWHp6ene3t50B5EmOzu7zZs3CwSCkJCQTqcIISEhAoEgODiYusWk+Mrb2sq4XKF/KrsfQ2DkyJEtLS3UL8i8vLycnJz++lCXHODRqJgIIWfOnAGAuXPnnjlzZvHixbq6utSSiRMnnjlzRl9fX+g8E0qnvw7kHh4enpiYmJ6efvr06aVLl1ILf/jhhxs3bpiamn766af0xuurGHv7qfr6nRb2cHZgYWFx4cKFXbt2bdq0SU9Pb+/evdOmTZNpwn4My6iYmExmbGxsp4VdlyCFpaent2vXrnXr1oWGhvr6+mpra7e0tGzfvh3+GFuP7oB91tdLKrNnz549e7ZMogwweFKPxKF0F0OFWrNmjbu7e2lpKXUZNDo6uri4mBrpme5oSJlgGUVSoKRVlclkslgsBoMRFRV1584dqphS847QHQ0pEzypl6vGxsYqYVMQS2vqSlkoLCw8e/bszZs3W1paoqOj16xZ0928mMpoypQpixcvPnPmzNKlS5ubm5ctW6aklwjbBALOX/vFMwC08PeBXGAZlauQkBDRx8VQKELv1GdlZa1evZrBYHzxxRfyjyQt0dHRFy5cKC4uVldXj4qKojuOmD4pKuq0RIXBuDNuHC1hBhoso3Ll4OAg9PY9m81+/Pix/POIws7Obtu2bZ0WUmfx77//PiGEwWDMmjWrY6FyycrKCgkJ4fF4hoaGbDZ75cqVLBbLzc2N7lx9Zqqurv3XY09VZbvGosTo6co/8Dg7OwNAXFyc0LXU43uGhoZyTiUGgUBw/PhxquMgg8Gwtrb29fWlLiaqqanFx8fz+Xy6M4qksrJyzZo1VHJTU9OVK1cOHjwYAFRUVNavX69Eozq98/Dh+IyM669e0R1k4MJLJ6gPMjIypk6dunLlSi6XO378+Bs3brx48eLSpUv37t3z9PTk8XgBAQETJkxIS0ujO2lPeDze/v37R44cGRcXp6KiEhQUVFBQkJCQUFBQsG3bNlVV1djYWAcHh+joaC6XS3fYnijfwX9/RXcdHyhEPxotLy/n8XjyTde7srKydevWUcduFhYWsbGxnY46BQLB6dOnhw0bBgAMBmPJkiW///47XWl7kJKS4vjH8NKzZ8/Oycnp1CA/P3/+/PlUAwcHh+TkZFpy9qyhvf1AaelnRUUEj0YVAJZRORGxjAoEgqlTp44cOfI///mPnBN2h8vlslgsPT09AFBXVw8KCqqvr++ucXNzc0REhJaWFgBoa2tHRERwOBx5pu1BXl7e3LlzqfrY679wSkoK9ZFR1fbx48dyy9kzvkBwpqpq1v374zMyJmZmvmhtxTJKOyyjciJiGS0tLbX/YywJPz+/Z8+eyTlnJ5cuXbK1taXyzJ8/v7CwUJStSkpK/P39qcdIraysEhIS6B1Zva6uLigoSFVVlfpHjoqK4nK5ndo0NzenpKQ8evSoY0lbWxuLxaK6M6mpqQUFBb2iu1Tda2h4PydnfEbG+IyMdfn5+RwOwaNRBYBlVE5EP6mnvr2DBg3q+Pb2cPQnO0+ePPHx8aEKqKOj488//9zXd/jf//7XMdrF0Q8/JPfvyyJnL3i86thYauIQVVXVTZs21dTUCG0YEhJiYmKyYsWKTstramqCgoKogQWMjY1ZLBY14KGcVXK5nz9/ThXQuQ8fXn7jp8AySjsso3LS1zv11dXVHd9eExMTeX573ywcRkZGkuyaz+cnJCQMt7Tk2tgQJpP4+5OXL6WbtiepqWT0aAKwfMoULy+vBw8edNfwzp07NjY2u3bt6lpGKVlZWR2P5Y8dO/b69esyC90Zh8+PLSt7KytrfEaGZ1ZWbFkZ969XpbGM0g7LqJz89ttvV65cKS0tFbq2urr6ypUrqampnZZnZmZ6enpS395x48b99ttvMg3Z6TR23bp11dXVUnhbNpsEBxM1NQJADA0Ji0Xa2iR/254UFBBfXwJAAIi9fUuPt4l4PJ6bm9uFCxdiYmK6K6OUS5cu2djYdFzieP78uZRj/5WAkMs1NW8/eDA+I8M9I2NbYWFFl2sRhJCk6uqTlZVlPU4thWQKy6iik9sdcJnfVMnPJ/PmvS5tDg7k8mUpvz+lqYlERBANDQJAdHRIRATprb7s2rVr7ty5hJBeyyghhMPhREVF6erqAoCWlta2bdsaGxulFv4NOU1NAbm51Fm8f27uA9nsBUkFllHlINM74Pn5+fPmzZPTIz4pKcTZ+XUxnT2bSLFY8/kkIYGYmREAwmAQf39SUdHrRnl5eUZGRtRxpShllFJaWtpxD83S0lK699DKa2vDiorcMzLGZ2S88/DhldpanPhYwWEZVSZSvwNeV1e3bds2dXV1ADAwMIiKiup52mHpaGsjLBbR1ycARE2NBAURodf1amrIgQNk4UIyaRIZM4bMmEE++ojcuCH8PW/fJpMmva7OEyeSW7dEzBIQEKCtrW1ra2tra2tsbKyrq7t161YRt71z587kyZOpXz8TJ068JfJOu0Md6g7S11+UkeGRlXWgtLSZjttZqK+wjCqfa9euddwBnz59+n2x7oBTN3+oOXWZTKa/v/9Led78IYTU1JCgIKKiQgCIsTFhscibJSM+/nWd7fpnzhxSW/tny5IS4u9PGAwCQKysSEIC6cuvlqampro/REZGvvfee01NTaJvLhAIEhISzM3NqUsu/v7+lZWVom/+5vv8+OOPQ4cOpT7W0H/+s1zYZVCkmLCMKiUJi+DVq1fHjBlDfWNnzpwpXiGWjsxM4un5Z32kHDnyuizOm0dSU8mrV4TLJc+ekagoYmBAAIizM6GK3a+/Ei0tAkC0tcnOnUSyCx3ffvvt+vXrxdiwqakpIiKCGmdAR0cnIiKiTwf1mZmZU6dOpeUxACQVWEaVGJvN7nRK3vWp8k6Ki4v9/f2pb6y1tXVCQoJ8ovbi0iViY0OOHCGEkMLC15UxNFRIy8ePiZERASBBQYQQwuEQGxuyZAlRgI6nBQUFS5Ysof5tR4wYcfr06V43UZCHUpGEsIwqvU43iC53cwecOmLS1NTsOGJqaWmRc9SeNDe/PqkPDiYAxMmJdDewQGwsASBaWoR6BF3BnpdMTU11cXGhPo5Zs2a92S3qTQrYRQqJDctoP5GSkuLk5CR0xI1O1++WLFny4sULGqP2YuhQAkD27u22AYdD9PQIADl5Uo6x+oDH48XGxlJzBKiqqnZ9/LbX4VGQcsEy2n8IPcC5c+fOW2+9RX1jJ0yYkJ6eTnfMHlVWvr5O2nPO6dMJAAkOllcscdTW1nbtDJabmyv68ChIWWAZ7W/eHI1YV1e34+mokydP0js+iEiys1+X0ZKSnpr5+xMAsnSpvGKJ7/79+9OnT6fq5pAhQ6jhUYyMjA4ePKiAwyEi8eCwzf2NmZnZv//973v37tnY2PB4PAAICgp68uTJBx98oAQzd3I4r19oa/fUTEcHAKCpSeZ5JObq6nrt2rVLly4ZGho2NDTw+fw1a9bk5eUFBgZSJRX1A/hB9k9Dhgypq6ujBm/n8XjUaKGiyMjIiI6OLi8v9/T0DA8P16EKltx05GxuBiOjbps1NgIA6OvLI9JfffLJJ0V/TB63cePGmTNnirLVxIkT+Xx+U1MTANjb21OzlaB+A49G+6etW7c2NDS8/fbbampqR44cefjwoShb1dXVeXt7e3h4HDhwICsrKzg4WNY5O7OweP2iuLinZtTajsZy9MMPP8yfP3/dunXr1q3rGIKgV9THQT0cGhkZWV5eLsuMSO7ovqqApC8jI4PJZGpoaDx9+jQoKAgAZs6cKcqGBw4c6GiZn5+vqalJw1M4trYEgERHd9uguZno6BAAcuqUHGMRQgifz1dTU+vrWCTUx6Gurl5QULBgwQIAWLVqlYwSIlpgGe1vBALBpEmTAODTTz8lhNTV1VFP3pw/f77XbTds2PBmj3J9ff3s7GwZZhXq448JABk1qpfnRnV15f/EaFVVlbq6ekxMzKZNmxITE0W5ZScQCKZMmQIAYWFhhJDCwkINDQ0mk3nnzh3Z50Vygif1/c3x48fv3Lljbm6+detWADA0NNy5cycAhIaGtra29rxtfX09NQQcRU9P79WrVzJNK0RgIGhrQ14efPaZkLX5+RAWBgCwcaP8r41qa2vv2LHDwsJi2rRpX3755Y4dO3rd5MSJEzdv3jQzM9u2bRsA2NrahoSECASCkJAQQnBmz/6C7jqOpKmxsXHIkCEAcPz48Y6F7e3tVA/6r776qufNg4ODg6hOloTw+XwtLa0nT57IMG53qONNAPK3v5H09NeHpRUV5MABYmxMAMiYMRJ2n5fcxYsXhw0b1nObjo/jzU63DQ0NFhYWAHBSUbsPoL7CMtqvbN++HQAmT57c6Xzz119/BQBdXd2ysrIeNj916pSjoyM1c/K1a9fMzc177aQvK3Fxr7sqUX80Nbsd4UmOBAJBQ0MD9ToxMdHJyann9mFhYQAwfvz4TpNRx8XFAYClpWWfRpNCCgvLaP9RWFioqanJYDBu377dda0oNzfa2tpcXFz8/Pz27NljbW3NYrFkFlYEL1+S6Gjy9tvEyYnY2pKJE8mGDaTLPCvydO7cORsbm6+//nrv3r3m5uYnTpzooXFRUVF3Hwefz584cSIAhIeHyzIvkhMGwQs0/cXf/va3pKSkDz/88NixY13XFhUVOTs7c7nc27dvU99hoRoaGk6cOFFZWTl16tS3335bhnGVU3p6+vXr15ubmxcsWODu7t5Dy0WLFp0/f37lypUJCQld1966dWvKlCmamppPnjzpmN8JKSu66ziSDlFO26m7HG+99ZYS9ApVclevXu3141i2bBkALFWGLq2oZ1hG+wMRbyLhzQ354AsEY8eNA4DIyMgemr148UJbW5vBYKRJPPsIohee1PcH33zzTWBgoK2tbU5ODjWiaHfi4+NXr15taWmZn58v746eA8bZ6uqTJSUqp08n7tjR88ex+8CBR3Z2DFvbY46O+Oyh8lIR5dk3pMjYbPaiRYs4HE5cXNzo0aN7buzq6vrzzz/n5eWpqqqK2B8c9UkDn/+PwsIqgSDs3XdHvPEQrlDuEyYcb2t73tpqrq4+qufRWJACw1+BSi8iIqKmpsbLy2vhwoW9NmYymSwWi8Fg7Nmz5/fff5d9ugEntrz8VXu7u56el4FBr401mMzNlpYA8E1ZWROfL/t0SCbwaFS5PXnyZO3atQwGIykpyczMTJRNrK2t8/Pzs7OzKysrFy9eLOuEEqqqqoqLi/vll18EAsHw4cPpjtOL562tXxQXA4Ox187OWE1NlE3stLQyGhuLWlsFhEwaNEjWCZEs4NGoctuyZQuPx9uwYUPHTJ+i2L17t46OzqlTp27cuCG7bJIrLCz08PAoKSnR1dUNCAjYv38/3Yl6EVNS0k7IYhOTEVpaom/1sbU1E+CHqqoXvfXWRQqK7ntcSHxJSUkAYGho2GmqH1FQZyFjx45V5Kkoq6urO4bw+Pbbb0Ucp4ou19js8RkZM7Oz2X0f1n7n77+Pz8j46NkzWQRDsoZHo8qqra2NGnxk165d1BhOfbJ169Zhw4ZlZ2cLfVZfQZiYmFA9BdhsdlJS0owZM+hO1C0eIfvLygBg/ZAhBn0f1j7Q0lJXReXGq1e3GhpkkA7JFpZRZRUTE/P06VMnJ6f169eLsbmWllZUVBQAhIWF1dfXSzudNAUHB1tZWVVWVm7atInuLN36/uXLF62twzU1F4k1sr2RqmqAuTn8cVlA2umQbGEZVUovX778+uuvASAmJkZNtFsZXb3//vvTpk2rqqqKjIyUajop279/f0NDg4+Pz/Lly+nOIlwdjxdfWQkAW6ytVcWd8OoDM7OhGhrPW1vPV1dLNR2SOSyjSumTTz5paGhYsGCBj4+PJO/DYrGYTOb+/fsLCgqklU26BAIBAKioqCxYsODevXt0xxHuX2VlTXz+dAODtyS41a7GYARZWQHA4fLy+vZ26aVDModlVPlkZWUdP35cXV199+7dEr7V2LFjV61a1dbW9o9//EMq2aTr119/9fLyun37dl5e3j//+U9qLiNFk8fhXK6tVWMwgi0tJXyrGQYGkwcNauDzj1RUSCUbkg8so8qHxWJRw6ePGDFC8neLjIwcNGjQ5cuXc3NzJX836fLy8lq6dOknn3yyatWqYcOGKebdsMPl5QKAZaamQ3vs9ymij6ysVBiMs9XVL9vaJH83JB/Yp1758Hi8o0eP+vv7iz5tcs9OnTrl4OAwduxYqbzbQNPQ3n7s5cs15uY6KipSecPjL186amtPkNKHi+QA56lXOJGRkWVlZStWrPDw8Oi6Njc39+DBg9ra2tKqoQBgYWFx4sSJtLS0zZs3C22wc+fO+vr61atXu7i4SGunSqSotfVa93NSzTAwCJL4dP5NK83MAODHqip+N4c4FhoaovQ0RXKDZVThnDp16tGjR+PGjRNaRktKSg4dOqSvr793715p7TEzM3Pfvn0eHh7dldHY2NiKiopp06YNzDL6lMP5tqysu7WW6uq20jid7+RAaWlbN2V08qBBWEYVCpZRhERioqa2cciQrstdZDneoL+ZmYWGRqeF5urqstsjEgOWUYREoqui4tf33mIS8jI0HI3Dwio8vFOPEEISwTKKEEISwTKKEEISwWujCuro0aPUZJ+dVFZWymiPz549CwgIELrqVfeP+wwcVTze9qKiTgtnGhq+bWgou53+u6Ki03hRg1RUPra2lt0ekRiwjCqou3fv3r17V557rKqqUsxuQgqCw+ensNmdFlprasq0jN7sMvjWYDU1LKOKBsuoggoPDxc6t9Lt27c3btwoiz2OGTMmNjZW6CpfX9+amhpZ7FSJWKirR3aZxcRMxs8ebR06dPhfH0pVF3cEKSQ7WEYVlLW1tZubW9flVVVVMtqjrq7u5MmTha4Seyy+/kSDyRzT20yfUueorY0PPCk+vMWEEEISwTKKEEISwTKKEEISwTKKEEISwZq8LHwAAAOTSURBVDKKEEISwTv1CsfT03PIkCHW3TwbaGJi4uPjoyvVW8bW1tbTp08fPXp0dw08PDxqamrEmMa5f9BTUbHV0rKS77hKVpqaPIFAg4kHOkoAR79HCCGJ4O86hBCSCJZRhBCSCJZRhBCSCJZRetTX1+/du9fV1fX69evUkra2ts2bN1taWg4fPjwqKoreeN3Jysry9vYeOXLkkiVLCgsL6Y4jE3fv3l20aNH48eP9/PyePXtGd5xuPXz40PuviouL6Q41QOGdenqsWbNm1KhRbW1t7D8GDdq3b196enpGRsarV6+8vb0dHR39/PzoDdlJU1PTnDlztmzZsnLlyoMHDy5btkzOY1DJwYMHD+bMmRMVFeXt7V1aWmplZUV3om69+ev2+fPn69evH7CPUtCPIPpMmTIlKSmJeu3g4HDu3DnqdWRkpJ+fH325hEtJSRk8eLBAICCEtLa26ujo5OTk0B1Kyvz9/YODg+lO0WebN28OCwujO8XAhSf1CkEgEDx//rxj+mJnZ2cFPJ00MjLicDj19fUAwOVy9fX1+99Z5OPHj21tbbdv375ixYoff/yR7jgiYbPZ33//fWBgIN1BBi48qVcIPB6vvb1d44+pdLW0tDgcDr2Ruho3btyCBQvc3Nzc3NzKy8sVMKHkKioqEhMTg4OD3dzctmzZ0t7evmLFCrpD9eLw4cO+vr4WFhZ0Bxm4sIwqBA0NDSMjo4qKimHDhgFARUXFEGFTotMuMTHx0aNHHA7HxcXF1NSUStufGBkZRUREzJs3DwAKCgqSkpIUvIzyeLxDhw4lJyfTHWRAw5N6ReHt7X3u3Dnq9dmzZ318fOjN053Ro0dPmjQpKSlp8ODBo0aNojuOlI0dO/bWrVvU68LCQsW/aXPy5ElHR0dXV1e6gwxoeDRKjzNnzqSmphYWFh46dCgtLW3v3r2ffvrp9OnTy8vL2Wz206dP4+Pj6c4oREhIiLa2dnl5eXJy8unTp5n9rsd3aGjojBkzmpqampqaLl68ePPmTboT9YLFYu3evZvuFAMd9qmnx4MHDwoKCqjXGhoa7777LgDU1NSkpqZqamp6e3vrKOTUETk5Obdu3dLQ0PDx8TE1NaU7jkwUFRWlpKTweLyFCxdaWlrSHacnDQ0NZ8+eDQgIYOAETbTCMooQQhLpbydlCCEkZ1hGEUJIIlhGEUJIIlhGEUJIIlhGEUJIIlhGEUJIIv8PON1X/zpMFRcAAAFbelRYdHJka2l0UEtMIHJka2l0IDIwMjMuMDkuNgAAeJx7v2/tPQYg4GdAAD4g5gXiBkY2JQUgzaLLAiQVnA0VGIG0ATOQCPXzMQdxDEGEozFE3wd7SzYlDSCDGabDiLAODogOJogOfyLsQNNBhB2o3jAmVYMJYQ2cYA2MEA1uRHgCVQMRfkDVQIQfGMHBxAjV4UGEm9B0EOEoNB2ku4qIoEXTYUpYBzcDUICTgYGLgQHIZNJgYmRWYGZhYGFlYOFhYOFlYGVjYGVnYOVgEAFpEN8EMp4BCvh8zwkfYAnj2wfiZG7bsV8pZ4cdiG00Z8d+Dul19iD27SvC+1mO8oPVCL6fbLdoy3awmgPHJ9uzmgiCxXUz1O1rPjXsB1ux5bL9Zp5GMPtnGKNDpDhEvcuG5/s/b4CoUbphfGDPNAjby8T7wCLlnWA137S97DfunwO2Vz0gfN+LmxC2GADntnyCLh5KpQAAAV16VFh0TU9MIHJka2l0IDIwMjMuMDkuNgAAeJx9k0tuxCAMhvc5hS8wyA8IsJxMpg9Vk0jttHfovvdXbUYpRCKFLLD1+TfYzgC23ue37x/4WzwPAwD+8+Wc4UsQcbiBHWC6Pr8ucLmfp81zWT+X+weQBxKN0b1nz/f1tnkILnBiJ5j9GOGEjiSrOKDDsmosG0nOe0El0cmI3AUF1gfIrCAdg95AdCHGLbdH3yWD5kbHKWURSx1S6nKjcuQo+KBcEaQ+GOFJvWMQE9TLIsZ+5qQg7cDUf0xWkJ2+dLtiHLscIbyYUCK0OhbJ0M9NZCjvUH+gyoaKoxi27tABKUqiiylHvSg55iNJb5JadcJHH5kP7nld5t1MPaZsWpe5TpltrqNUHM3EFJvqYBSba/tZt9Quqxb42kvSiFA7Rhow1r6YSdLUvzh8U2VSydiU0uzUFMzs3L62fZvZ29+n5+EXJpa2j5weEVkAAAD+elRYdFNNSUxFUyByZGtpdCAyMDIzLjA5LjYAAHicVY67agMxEEV/JeUuyMO8pJHGuDIYV3F64yJFyrAmuPTHR9I6rAJCzDnM417Pt+N0Pd/m/h2nw2W+/BOnub7T23PaEWRCtFALxKhhv2MQLFoNAknpYmjRVI0AWawGQRI1QaAqL4H8EswW6E8gRDNN61rFegiBcy4ibSjm3ITlYlUQMPc7tYWQk3XTwhFQ1CjrEuozKUpb0sNZb+lmFbmeZkDGsp6xFObw+Vi+P36WuyO08n15fEFx2gCdNyB0GYhcB/K4AXvaQNw2UM/DDHsZSJyGGNFpyJGchiDmNATJz1/MGHtI3Dtn0wAAAABJRU5ErkJggg==", "text/plain": [ - "" + "" ] }, "execution_count": 5, @@ -173,7 +174,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAIAAADCEh9HAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxU1d8H8O8MOwjDIiBbIqgoCC4oiprkRoqaloFLPyzMSK3Q3KjHhaeyJxVN8gnMpRTF+gmKYYu/AtJ8TFwGJRZFETEYZpCdgQFmmJnz/HGVCBgcZrl3Br7vF3+Md86d+zXjM/eee865LEIIIIQQUhWb6QIQQki/YYwihJBaMEYRQkgtGKMIIaQWjFGEEFILxihCCKnFkOkCkL76+eef8/Ly2v/o5OS0YsUKButBiCkYo0hF5ubmNjY21OsLFy4AAMYo6p9YOPweqYkQMmrUqPj4+BdeeIHpWhBiAPaNInX9/PPPRkZGmKGo38IYRerat2/fli1bmK4CIcbgRT1SS25u7rx58x4+fGhkZMR0LQgxA89GkVr27Nmzbt06zFDUn+HZKFJdeXm5n59fcXGxtbU107UgxBg8G0Wq43K5H330kbYzlBDyyy+/hIaGZmZmUluEQuHGjRsnT568cOHCjIwMrR69t0QiUXx8fHh4ePuW69evh4eHh4SExMTEiEQiBmtDWoJno0jXLVu2TCKRFBYWrlu3LjIyEgAWLVo0ZsyYxYsX37t374033sjPz3d3d2e6TACAu3fvhoaG+vn5nT17ViwWA0BBQcGsWbMOHDgwePDgDz/80MPD48iRI0yXiTQMYxTph1deeWXOnDlUjAqFQisrK2q7i4vLiRMnZs6cyWh1T8jlchaLxefzPTw8qBglhPD5fBcXFwBIT09ftWrVX3/9xXSZSMNwFhPSP1ZWVs3NzdnZ2ampqe7u7s8//zzTFT3BZnfuJWOxWFSGAkB1dbWjoyPtRSGtwxhFeqmmpubrr7/Ozs6ePn161/DSQRKJZN++fWvWrGG6EKR5evD/H0Jdubm5HT9+PCcnJzMzMyUlhelynqGtrS08PNzLyysiIoLpWpDmYYwi/VNSUkL16RsYGDg4OFRWVjJdUU8EAsGMGTM4HE5iYqJenDij3sKLeqSq8nK4cgUePwa5HOztYdIk8PTUxnGuXbv2+++/379/n8Vi1dXVRUdHv/vuu2w2+8UXXywsLMzPzz9x4oQ2jquahISE8vJymUy2e/fucePG2dvbh4SE2NnZeXp67tu3DwCioqLMzMyYLhNpEsYo6r0//4TNmyE9vfP2CRNg716YNk0bx+w4EjMtLS05OTk/P9/Dw+PPP/90dnbWxhFVZmVl9emnn1Kv5XL5unXrmK0HaRsOeEK99Ouv8MorIBKBvT2EhoK3N7DZ8OABpKRAWRkYGsLRo/D660xXiRB9MEZRb/B44OcHdXWwYAEkJcHTwZsAAC0tsHYtHD8OxsZw7RqMHctclQjRCju8UW/8z/9AXR0MHw7Jyf/IUAAwM4Ovv4bAQJBIYNs2hupDiAF4NoqU1tYGdnbQ2AiHDkFkZPdtLlyAkBBgs4HHAycnbVd08+ZNAPDx8TE3N+/6bkVFRVlZmZWVlZeXl6aOyOPx6urq7Ozsuu2Qlclkd+7cAQAvLy9jY2NNHRTpODwbRUrLzYXGRgCAOXMUtpk5E0xMQC6HrCxtlyOVSgMCAgICAgoLC7ttkJiYGBAQsHr1ag0edNu2bX5+fjt37uz23fr6ej8/Pz8/v7KyMg0eFOk4jFGktOJiAABzc3juOYVtjI2fDHt68ICmqhBiGsYoUlp9PQAAh/OMZtS6eVRjhPoBjFGkNGqJe6n0Gc0kEgAA7BlE/QbGKFKarS0AQH09tLX11Ky6+u/GCPUDGKNIaX5+AABtbXDnjsI2dXVArac5ejRNVSHENJwMipQ2ZAh4eMDDh3DmjMKUTEkBQsDKCiZMoK2ua9euVVOnwP9UVFSkpSMKBILLly933S4UCrV0RKTLMEZRb6xZA5s3w4EDEBkJbm6d321ogE8+AQCIiIDuBnJqyTvvvEPbsSjff//9999/T/NBkc7CGEW98d57kJgI+fkwcyZ8+y2MH//3W/fvw2uvAY8HLi4QE0NnUUuXLrW3t++6PTs7++rVq9o4ore395QpU7puF4vFOrXcFKIHxijqDRMT+OEHmDMH7t2DgADw94dRo4DNhvv3ISsLZDJwdoaffgIbGzqL2rx587hx47pu3717t5ZiNCgoKCEhoev2mpoajNF+CGMU9ZK7O3C5EBsLx44Blwtc7pPtDg7w2mvwX/8FAwcyWh9CdMMYRb03YAB89BF89BGUlIBAAHI5ODqCpyfg0u6oX8IYRSr55huoqoKVK2HyZAAAsRhiY8HEBNavZ7oyhOiGMYpUEhcHeXkQEgLUvZ3mZvjgA7CxwRhF/RBehSGEkFowRhFCSC24bDNSiZ8f5OVBbi74+gIA1NWBrS3Y2EBtLZ1V8Pl8ALC3tzeilk35p6amJqFQyGazBw0apKkjVlRUNDc3czgcOzu7ru/K5fJHjx4BwHPPPWdoiD1m/QWejSKVUN++LBazVTg7Ozs7O3eboQBgYWFx6tSpiRMnVlVVaeRwLS0tM2fOPHXqlKWlZbcN2Gy2h4eHh4cHZmi/gjGKNEE3UrUTFot18eLF0tLS7du3a+QDY2Nj79y5k5qaamBgoJEPRH0Dxijqyw4cOGBsbHzkyJHs7Gw1P6q8vHzPnj0AEBcXhzGKOsIYRX3Z0KFD165dK5fL169fr+ZtgC1btohEorCwsKCgIE2Vh/oGjFHUx8XExNjb21+5ciU1NVXlD8nKyvruu+/MzMx2796twdpQ34AxilSik52h3bK2tv74448BYMOGDc3NzSp8QvvJ7ObNm93d3TVcH9J/GKNIE3Q7Vd96663Ro0eXlpbGxcWpsPvx48dv3Ljh4uKyZcsWjdeG+gCMUdT3GRgY7N+/HwA+++wzaqip8hobG7dt2wYAe/bssbCw0Ep9SM9hjKJ+Yfr06a+88kpTU9OHH37Yqx137twpEAgCAwOXLVumpdqQvsMYRf3F3r17TU1NT548ef36dSV3KS4u/uKLL9hsdlxcHEtXuywQ4zBGVSeRSE6cOEFdLVKam5sPHjx4/Phx5oqiySMvL15gYNPTBUYlALzAwNKxY5mtqmdDhgx5//33CSHKD37asGGDWCx+4403AgICtF0eI4RC4enTpxMSEv744w+ma9FnBKnk8uXLXl5egYGB3t7e1JbU1NRhw4aNHz8+ODiY2dpo4O3tDQAFBQXUH6nZlgMHDmS2qmdqbGx0dnYGgJMnTz6zcUZGBgBYWlry+XwaaqPf3bt3nZycXn755e3bt69YsaK1tZXpivQVxqiKmpqaWltbL1261B6j9fX1bW1tSUlJGKO67NixYwDg4uLS1NTUQ7O2tjZfX18A2L17N2210Wz27NnR0dFMV9EX4EW9iiwsLExMTDpu4XA4uCCF7nv99dcDAgLKy8t7HkifkJCQl5fn6em5bt062mqjk1QqvXjxYkRExO3bt69duyaTyZiuSI/hrz3qX1gsVlxc3JQpU2JjY1euXNntcPra2lpqxP7nn3/e6cuyz+Dz+VKp9M033+RwOHw+38TE5LfffjM3N2e6Lr2EZ6P0kRPSIpcr+pHp1cKvhBAAUHTz+t69exEREcHBwdu2bROJRPSW9mzU6KXW1tbo6OhuG2zfvr2mpmbmzJkvvfQSzbXRLCkp6aeffsrOzm5sbDxz5gzT5egrPBulz/81NGwsLlb07rbBgxfp7aOJO6ZqS0vL9OnTV65cGRER8emnn65Zs0YHH92+Z8+etLS05OTktWvXdlpq5M6dO4cPHzY0NOw4BkOXrS0qetTS0u1bg4yNvxkxotu3nJycjI2NW1tbAYDNZjs4ONTSu+R2X4JnoyqSyWQpKSmXLl0SCoUpKSlFRUVNTU0pKSk3btyoqKhISUnh8Xjd7mjIYnmamXX9seor/aopKSmOjo47d+6cNm3a0aNHT58+ralVkzWofWbn+vXrO3ULvv/++1KpdO3atdQtJt1X09ZW2dZWLZXWdvmpV9zjaWRktHTp0u3bt5eWln733Xc3b96cO3cunWX3JX3kV5d+crmcGhATEhKSkZFha2vL4XCoLZMmTcrIyPD09HR1de2640Ajo9Pe3nSXS6P8/PxJkyZRr93c3Ozt7e/du2dPPUBUl2zevPnYsWM5OTnHjh1btWoVtTE1NfXXX3+1tbXdsWMHs+X11n8PHhzS3XNNehAfH79ly5aQkBBra+uUlBQvLy8t1dbnYYyqyMjI6NChQ502dt3SD9XV1dnY2LT/0crKSjevFs3MzHbt2rV06dKtW7eGhoZyOByxWEz1lu7cubPbRy31MQMGDEhISGC6ir4AL+qRKnq4xeTg4FBTU9P+x5qaGkdHR/oq640lS5ZMmzatsrJy586dALB3794HDx74+Pi89dZbTJeG9AnGKNKAjqk6adKkixcvUh2OeXl5LS0tPj4+DNenWFxcHJvNPnDgwNWrV6lnhOzfvx/H/6JewRilm4SQ3KamTj98iYTpujQmJCTEysoqLCzs8OHDS5YsiYqKGjBgANNFKTR27NiIiAiJRLJkyRKhULh48eLZs2czXZQqWuRyoVTa6YfpovoLfE49fX6vr1c04Gm5g8MGNzea61HHyJEjCwsLjx8/Hh8fz2Kxdu/ePX36dAcHh8ePHwNAQ0PD0aNHeTzepEmTwsLCdHxtJIFA4OHh0draamhoePfu3aFDhzJdUe8suXOnWMGAp/8bO9aMjadKWocXL3QzZbOncjidNnrp2+wRuVwOABEREYQQFotFncFRGwGAw+Fs3LiRyfqUduvWrfXr17e2ttrY2NTV1S1ZsuSLL76YOnUq03X1mqOxsVWX55Xi80tpwuSE/n7mUl2dP5c7LzeX6ULUIpfLExMTTU1NAYDFYrm5uYWFhVGdiUZGRnFxcW1tbUzXqBSBQLBy5Uo2mw0Ajo6Oq1atcnFxof5Sr732Go/HY7pAZYUVFPhzuT9VVzNdSP+FMUofZWK0SSqlrR4V3LhxIzAwkPoCnjBhwh9//EFtv3v37pw5c6jtI0aMuHDhArN19kwikcTFxXE4HCr6o6Ki6uvrCSEikSgmJsbMzAwAzM3NY2JimpubmS62JzJCCMaoDsAYpc8zY/SGUPjC7dvHBQKxXE5nYcrg8Xjh4eFUL6ezs/OhQ4dkMlmnNufPn/fw8KDCdP78+cXFxYyU2rPz5897enpSRc6aNat9rb92ZWVl7X9TV1fXxMREue79cwil0gM83nv37xOMUR2AMUqfZ8bo3tJSfy7Xn8tdnJ//R309nbX1oLm5edeuXdTddjMzs+joaKFQqKixWCyOi4uzsrICAGNj46ioqB4a0+zu3bvt8x29vLx++umnHhpfunRpzJgxVOOgoKCcnBza6uyZTC4/W1k5KyfHn8udkJ19TyTCGGUcxih9lLmov97QEFpQQIXpmvv3i5m+qDx//nz7UnLz589/+PChMnuVl5dHRkZS3Y6KTl3pVFNTExUVRXXg2tjY7Nq1SywWd2zw4MGDX375pdPfTiaTJSYmOjg4AACbzQ4PD3/8+DG9hXfGFQqXPf3f46179+6JRATPRnUAxih9lLzF1CaXf/v4cdDt2/5c7sTs7NjS0kYmOkyzs7Off/55KkDHjh37+++/9/YTsrKy2h9hlLBsGbl+XRt1PoNEUn/w4MCBAwHA0NDw3Xfframp6dRkzZo1w4cPX758+aBBgz777LNO79bV1UVHR1OrjlpbW+/atYuRh21UiMXbS0rGc7n+XO7c3Nwfq6vbOxowRhmHMUqfXt2pr29riy0tnZCd7c/lzsjJ+fbxYxldPXRVVVVRUVEGBgYAYGdnFxcXJ1U1x+VyeXJy8khPT7G7O2GxSGgo+esvzVbbk4wMMmoUAXj7+ednzpyZ291/+aampk2bNrW0tBBCuFwutXZc12b37t2bN28e9ZUwfPjwH3/8UevFP9Uikx0qLw+8dcufy51y69ah8vLWf57aY4wyDmOUPnVtbdcbGnIaG5XfpVAkequwkLqIW37nTnZv9lUBdQub6tnseAtbTdLGRvLBB8TEhAAQS0vy2WdE2yd09+6R+fMJAAEgw4aJlUs9agmV2tpaRQ3S09PbJ7bOmjUrPz9fcxV3Q05Iem3tvNxcfy53PJcbXVzM/2dfBOWXmprTlZV/tbRotRjUA4xRPfB7ff2CvDwqTNcXFZVrJ4OeeQtbXaWlJDz8SbS5uZHERA1/PqWxkcTEPIlsCwsSE6N8ZJ88eXL06NE9t1E0WErjCkSiiKffoOF37vTq2xfRDGNUP7TKZIf4/Cm3bvlzuZNv3fqmsFAkEmnqw3t1C1tdv/1G/PyehOn06eTPPzX2yTIZSUwkjo4EgLDZJDycVFQov3dRUZGzs/OlS5eUaVxdXa2pfo+uBFVV7d2gc/78s2M3KNJNGKP65LFEsr2kZAKXGxAW5uLiov6Qxk63sGmag0Tlnb3933lXWdlNs+pqsn8/WbiQjB1LRowgU6aQtWvJr792/5mXLpExY56k88SJJCurVxXduHFjyJAhycnJvdrr1q1bHe/CXb58uVe7d0UNF7O0tFx69eqk7OzY0lIdn46BKBij+iebx/P396d+e6dOncrlclX4kLa2tkOHDlGL0hsaGkZGRlZ2m2XaU1tLoqOJsTEBIDY2JC6OdEzwY8cIh/MkFjv9BAX94zSzrIyEhxMWiwAQV1eSmEh6+dWSmJjo5ub222+/qfb36DQmrKSkRLXPSUlJaf+c9z7+WEtdN0gbMEb1EjWxfdCgQdQc8PDwcIFAoPzuGRkZo0aNon5jZ8yY0e0tbJrk5ZFZs57k4wsvPNl45MiTWFywgFy8SJqaiExGHj0icXHEzo4AkKFDSV0dIYRcvkxMTZ90g378Men9MNvs7Gybf7p48WJvP6TrDIXG3nRl3r59u/2xeiNHjvzPf/7T2wIQszBG9VhTU1NMTAw1pNHCwiImJuaZQxrv378fGhpK/cYOHTq0t5ex2nL+PPH0JF99RQghJSXE3JwAkA0buml5/z5xcCAA5M03CSFELCbDh5PQUPLoEa0Fd6fjfFklu1w69rHa2tpqto8V0QZjVO8VFRUpk4yNjY29zVxatbYSKkE2biQAxMuLSCTdtzx5kgAQY2PC5xNCiM5MNqVcv369/Yl+AQEBWQp6aTvd8Y+MjKyqqqK5VKQpGKN9RMfr9JkzZ+bl5bW/RU1qpB6IRE1qrOjNLWy6eXoSANJlNtHfxGJia0sAyNGjNJbVC8/8D07z+FOkbRijfQd116h94iN1gtNxiY2JEycqOjnSFTU1T/pJe557+uKLBIC8/TZdZami4+n/gAEDqNP/TrOhfvjhB6bLRBqAMdrXVFVVrV69mupus7CwoH5jBw8efPr0aaZLU0JBwZMY7XkNlFWrCABZuJCuslTXMTcdHByMjIyosWX79++XKOq1QPoGn9PS1wwcOPDgwYP5+fnDhg1ra2tjs9mbNm26e/duWFgY06Upobn5yQszs56aUV8PTU1ar0dt1AT89PR0JyenxsZGqVS6dOnSwsLC9evXU5GK+gCM0b7J0tKSz+dLJBK5XN7Q0GDWcyp1cOnSpZdffnny5MlRUVHV1dVaLbIblpZPXohEPTWjAtTKSuv1dJGVlbVixYpFixbt27dPLBYrude4ceMkEgm1AIq7uzu1+B7qMzBG+6bo6GiRSDR37lwTE5Ovv/6ay+Uqs5dAIFiwYEFkZOS5c+eam5sjIyO1XWdngwYB9RjRR496alZSAgDg4kJDRR3duHEjIiJi3rx5GzZsOHv27I4dO5Tccdu2bTU1NQEBAWw2+/PPPy8qKtJqnYhuTPcqIM27evUqi8UyNTUtKSnZsGEDAEyZMkWZaaNXrlyxsLCgBkKdPn3a29tb+8V2MWIEASAffaSwQUvLkwlOJ07QWBYhhMhksvZpDl9++eWMGTOU2Ss/P9/Q0NDQ0DAvL+/1118HgJdfflmbZSK6YYz2NTKZjFosefv27YSQhoYGarKTMiPtW1tb/f39g4KCzp07N3ny5JSUFO3X28XWrQSADBmicGWmr78mAMTcnHRZgJkeAoGAGl727bffKtOeevr0unXrCCEVFRXUOoS//PKLlstE9MEY7Wu++eYbAHBxcWlqaqK2HDp0CADc3NyeuSiURCJZvnz53LlzJ06c6ODgkJaWpv16u+DxiKUlASDvvdfNu+2zmNato72yJ3bu3BkYGOjr66vMWoIpKSkAYGtrW/10WeVPP/0UALy9vfXlSdTomTBG+xShUOjk5AQASUlJ7RtlMhm1lMknn3zS8+7x8fETJkygLv/PnTtnamrawxrGWnTixJM59SEh5NIlQi1IXFZGvvjiyZx6Hx/y9EuCKQkJCePHj++5TWtr69ChQwHg4MGD7RvFYjG1MSEhQcs1IppgjPYp0dHRABAYGNipJ/TKlSssFsvc3PyvHp/hsWPHjiVLllCvGxsb2Wz2gwcPtFhuD06dIjY2f6/qxGb//To4mDD0wAyZTNb+KKfMzEwHB4ee23/yyScA4OPj0+nE88yZM51OUZFewxjtO4qLi01MTNhs9vXuHh736quvAsC//vWvHj7hzp071tbW27ZtO3Xq1Ny5c1988UWtFauEmhqyfz+ZP5/4+pKhQ0lgIFmzhmRmMlhRenq6u7t7fHz8qVOnRo8eva7HjgUej0et+fRrd2ukduwwRfqORQihd2gA0pZFixalpaVFRERQ3aOdlJWVjRgxoqWl5fLly1OnTlX0IXw+/8yZMxUVFT4+PmFhYThEvJOrV6+ePXu2paVl8uTJy5cvpx4i3a3w8PCkpKRXX32V6h7tpKCggJqke/v27fbFEJC+YjrHkWZkZmbC01H3itps3boVAPz9/Zl9anx/kJWVRY05e6h4Vuvq1asBYNasWXQWhrQBY7QvkMrlU4KDAWDXrl09NGtsbHR2dgaAFK0+banfkxMy9YUXAGDr1q09NKusrLS2tgaAC+nptNWGtAEv6vuC5MrKr8rLh1y/nhARQS0ppLBlWtp5G5taa+szo0aZK74gRer4sabmq9JSs9TUY9HRVPeoIvFHj15zdBR7eJzy9jaipm8hPYS/SHpPKJMdEgiEcvmKpUt7zlAACF240MTRsbKt7XhFBT3l9TfNcnl8eXmFXB7x/vs9ZygArH7zTbGn58PW1uTKSnrKQ9qAMar3viovb5BKJ1haBllbP7MxC2C9qysLIKmiokzplTWQ8r4RCKra2nwtLOba2j6zsQGLtdHVFQAOCwQ1bW3arw5pBcaofnvY2nq2uprNYm10c1NyF18Li7l2dhJC/re8XKu1aUpBQUFsbKyo5zWfdEO5WPxtZSULYJObm5KX6BOtrKZwOCKZ7BCfr93ikNZgjOq3z8vKZISE2tsPVXopPAB418XFnM3+ra7uulCovdrU19DQMHfu3GXLln3wwQd1dXVMl/Ns+3k8iVw+387O5+mC2crY5OZmxGJ9X119t325VaRXMEb12MX6+mtCoZWBQaSTU692dDAyen3QIADYx+PJdPgeo5WVVXx8fG5url4MX73Z2Hipvt6czV7byxX83ExMQh0c5AB7y8p09x8DKYYxqq/aCPlfHg8AVru4cAwNe7t7uKOjs7Hxw5aWNPrXZlYai8Xy8PBgugqlyAnZV1YGACudnOx7H/pvOznZGhn92dT0mz6cdKNOMEb1VdLjx6VisYep6eKBA1XY3ZjNjnJ1BYCDfH6jTKbp6vqdM1VVD1paXExMlqu0sr2FgcHbTk4A8DmP1yqXa7o6pF0Yo3qp9umIpQ1ubgaqjjecZWMzztKyTio9KhBotLp+RyiTHRYIAOB9V1djVUfjvjxw4HAzs8cSybePH2u0OqR1GKN66UB5uUgmm25tPUm95xFtcnVls1inKyv/am3VVG390Ffl5fVS6QRLyxeUGHOmCJvF2uDmBgDfVFRUSCSaqw5pHcao/rnb3PxzTY0Ri/Weq6uaHzXc3HyhnZ2UkP08nkZq0zgul5uRkSGXy69cuZKTk8N0Od1QYcyZIuMtLWfY2LTK5Qk4+EmvYIzqn+8qK+UArzk6PvesOUvKWOPiMsDA4GpDw8OWFvU/TeN++OGHw4cPL1q0KDU19cKFC0yX042jfL6MkFcHDuzVmDNF1ru4GLPZF2pqSvD6QH/gnHr9IyPk++rquba25gYGGvnAzLo6VxMTL3NzjXxafyOSyRIfP37NwUGF8RLdSq6qcjMxCWTi8dFINRijuuhBS0tyVZWid+fa2o591mRtFRzi85sU3LIfZGz8mqOjxo+oL0rF4vTaWkXvPs/hDNfCN1BKVZWiW/b2RkZzlJhpimijme9PpFkCiSRVcYyOMDPTRoymVlcrmtbtbW7en2P0UUvLQcWdlXZGRtqI0cN8fp1U2u1boywsMEZ1Csao7uIYGn46ZEjX7R6mpto7aKST04guoWCpoctVvWZlaLi+u3t6Y7TwldZuiYPDkC7/3Lb6MKerX8FfD91lzGKpOZ5JBaMsLCZzODQfVC+Ysdkv2dnRfNDnORz6/x9AvYV36hFCSC0YowghpBaMUYQQUgv2jequeql0ZWFhp42zbGyWa/Om+Zfl5Sf+OafbmMU6MGyY9o6oL+ql0uiHDzttnMrhLNBmh+mJioqfa2o6bjFms7cNHqy9IyIVYIzqrjZCcrss+T6iN+sBq+B+l7lMKq+10ceI5fLMLqvYORgZgTZj9EZjY6ctZhijugdjVHfZGhmdHDGi00ZNzVxSZPvgwWMtLTtuwRCl2BoZ7fX07LRxoJbHHkW5unr/c/yZygt6Ie3BGNVdBgCOxsY0H9TeyEgjU/X7HiMWy0/LlwJdDTczG//PbzWkg/BUAyGE1IIxihBCasEYRQghtWCMIoSQWjBGEUJILXinXhfZGhpOtrKypnddpdEDBjRIpZpae7gvsTAw8DQz0/bYpk5cTEwGGBiY4aBdfYDLNiOEkFrwuw4hhNSCMYoQQmrBGEUIIbVgjDKjoaEhNjZ29GoipqkAAANCSURBVOjRly9fprZIJJJ33nnH2dnZ3d199+7dzJanSE5OTnBwsJeX16uvvvrgwQOmy9EWqVS6cOHC8ePH1yp+kp0uSE5Onv3UBx98wHQ5/RfelmXGypUrvb29W1tb6+vrqS379u27cePGrVu3amtrg4ODR44c+dJLLzFbZCcikWjOnDlRUVFvvPFGQkLCkiVLsrOzmS5KK/bu3WtmZnb79u02Bc/40xE3b94cPnz4ypUrAcDGxobpcvoxgpgTGBiYlpZGvR42bNi5c+eo1zt37ly0aBFzdXUvMzPT1tZWLpcTQsRisaWlZW5uLtNFad79+/cdHR15PB6bza6oqGC6nJ4sX7786NGjTFeBCF7U6wS5XF5SUjJq1Cjqjz4+PsXFxcyW1JWdnV1ra2tdXR0AiMViDofz6NEjpovSMELImjVrduzY4eLiwnQtzyYQCC5evLhixYr169eXlZUxXU7/hRf1OkEsFkulUpOnK9SZmpo2NzczW1JXo0ePXrx48bhx48aOHVteXi7qsqR0H3DkyBGhUPj2228zXYhSNm3a1NjY6O7unpSUNG3atMLCQhNc5JAJGKM6wczMzMbGRiAQuLm5AUBFRYWzszPTRXXjxIkT+fn5IpHI19fX0dFxcN9ahr2qqio6OnrBggV79+4FAELIl19+uXXrVtMuT4rXESEhIdSLgICApKSkmzdvTp06ldmS+ieMUV0xe/bsM2fOBAQEAMDZs2eDg4OZrqh7VM/Dv//9bxsbG29vb6bL0SSpVKpf97v5fD71ddvQ0NDS0mKnzceZoB7gZFBmJCcnZ2ZmpqWljRkzxtfXNzY2Nj8/PygoaM6cObW1tQ8ePLh27ZoO/lZs2LDB1NRUIBCkpaWdPn169uzZTFekRQYGBnw+31GbDxBUh1AoHDlyZFBQkLe3d2pqqq+vb2JiItNF9VMYo8zIyckpKiqiXpuami5YsAAAqqqqMjIyTE1Ng4ODLWh/XoUyCgoKsrKyTExMgoODdTZfNOXMmTPz58/X2St6AKivr09PTy8pKRkzZszs2bNZ+JgmhmCMIoSQWnDAE0IIqQVjFCGE1IIxihBCasEYRQghtWCMIoSQWjBGEUJILf8PISeDmDY/PKQAAAFWelRYdHJka2l0UEtMIHJka2l0IDIwMjMuMDkuNgAAeJx7v2/tPQYg4GdAAD4g5gXiBkY2JQ0gzcyiywKkFJwNFRiBtAEzkAj18zEHcQxBhKMxROMHe0sOiA4miA5/InSwKSkAGTArjEjVYExYAydYAyNEgxsRTkLVQISTUDUQ4SS0YCLZ1yakuolkDaakajAjrIER7GtGqA4PImICTQcR4cTNwKjAwK7BxMDBwMjEwMTMwMTDwMQLTMMMzKwMzGwMHJwMHFwMHNwMIiAN4ptAxjNAAd8iBe/9/Af/2YE4i3dNtj17ym03iL3DucC+nxMifv3tM/tq14lgcb1by+wbd8XtBxuVK+zw/h2EzfpKy8Et5y9Yvckbr/3OG/bbg9hNZVf2e4he2wVi63ZN2Z9vDlEv5sp1gJEZwrZfqHigv+I/WK+wzQ77NyHrwHp9PjywU86HsMUAlyt8+hQPq28AAAFaelRYdE1PTCByZGtpdCAyMDIzLjA5LjYAAHicfZNLcsMwCED3PgUXqAcQ+i2TOP1MJ/ZMm+YO3ff+U5DHkTxVKnkB6AnExwPY+pjev3/gvngaBgD858s5w80h4nABE+B4fnmb4XQ9HDfLafmar59AAuT0ju49e7gul81CcIInHGN2EiLgKDn6ImBZ9SrDYtbI5JzdQHSo0l/QqUccs0u+HEsO1HUoytGYUO4ORboOPTwrqNH8CqaI/chBQd6DqQvGAoaI2xP1kb0nJs25FIeDntPj4mSrIo3B56TnJRkK3dCEGltRCigrmkLqp0NkKO/QyH2UV9Sz39qY+inpRLxaJi479aRlDfQAFAWxBTl2wfM87SZqnbHjMk91xmxznSRWNdV5sdNcx0JRcLX5pITUFptKrnay6FI7RurB176YGprimx6bCpMxbR2LgZpyFQO32ba5mb79eyoPv1BDtwIGCbIqAAABBnpUWHRTTUlMRVMgcmRraXQgMjAyMy4wOS42AAB4nFWPO2sDMRCE/0rKO7iIfWlXWpPqwLiK0xsXKVKGM8Glf3z0MDkFVMx80uyOLqfrOl1O13k6r9PbeV6n41zO8U+8PCYMwpl5wcCK2ZYDhMwpFgJBsqI21N70R2SNgBFW9FokMHDVh2Iss5RMDVus4cZIi8TGKsKgMSfrYdSSpUZRQRpNmqANpJEZPVmkKH1HynUHhgSCzzIivUwpCxwbTAZtHP1DqSM1iP23UofNy+d9+/742W4Oocr37f4VkBx3R07DFTsPzmU34HE35rqb5Lab7GkYAJ4Hh45DDXYcaojj0CM6Dj308QuD2n/Dp0LyYwAAAABJRU5ErkJggg==", "text/plain": [ - "" + "" ] }, "execution_count": 6, @@ -210,7 +211,7 @@ { "data": { "image/svg+xml": [ - "eaeaffeafeaf00.511.522.533.5Solventeafecpf6eaffeafeafCoordination Numbers Of SolventsSolventCoordination Numbers" + "eaeaffeafeaf00.511.522.533.5Solventeafecpf6eaffeafeafCoordination Numbers Of SolventsSolventCoordination Numbers" ] }, "metadata": {}, @@ -251,7 +252,7 @@ { "data": { "image/svg+xml": [ - "eaeaffeafeaf00.511.522.533.5Soluteeafecpf6eaffeafeafCoordination Numbers Of SolventsSoluteCoordination Numbers" + "eaeaffeafeaf00.511.522.533.5Soluteeafecpf6eaffeafeafCoordination Numbers Of SolventsSoluteCoordination Numbers" ] }, "metadata": {}, @@ -287,7 +288,7 @@ { "data": { "image/svg+xml": [ - "eaeaffeafeaf00.511.522.533.5Solutefecpf6EAxCoordination Numbers Of SolventsSoluteCoordination Numbers" + "eaeaffeafeaf00.511.522.533.5Solutefecpf6EAxCoordination Numbers Of SolventsSoluteCoordination Numbers" ] }, "metadata": {}, @@ -328,7 +329,7 @@ { "data": { "image/svg+xml": [ - "eaeaffeafeaf00.511.522.533.5Solutefecpf6EAxCoordination Numbers Of SolventsDegree Of FluorinationCoordination Numbers" + "eaeaffeafeaf00.511.522.533.5Solutefecpf6EAxCoordination Numbers Of SolventsDegree Of FluorinationCoordination Numbers" ] }, "metadata": {}, @@ -368,7 +369,7 @@ { "data": { "image/svg+xml": [ - "eaeaffeafeaf00.511.522.533.5Solutepf6EAxCoordination Numbers Of SolventsDegree Of FluorinationCoordination Numbers" + "eaeaffeafeaf00.511.522.533.5Solutepf6EAxCoordination Numbers Of SolventsDegree Of FluorinationCoordination Numbers" ] }, "metadata": {}, @@ -409,7 +410,7 @@ { "data": { "image/svg+xml": [ - "eaeaffeafeaf00.20.40.60.81Solventfecpf6EAxDiluent Composition Of SolutesSolventDiluent Composition" + "eaeaffeafeaf00.20.40.60.81Solventfecpf6EAxDiluent Composition Of SolutesSolventDiluent Composition" ] }, "metadata": {}, @@ -418,7 +419,7 @@ { "data": { "image/svg+xml": [ - "eaeaffeafeaf0.20.40.60.81Solutefecpf6EAxFractional Pairing Of SolventsSoluteSolvent Pairing" + "eaeaffeafeaf0.20.40.60.81Solutefecpf6EAxFractional Pairing Of SolventsSoluteSolvent Pairing" ] }, "metadata": {}, @@ -427,7 +428,7 @@ { "data": { "image/svg+xml": [ - "eaeaffeafeaf00.10.20.30.40.50.60.70.80.9Solventfecpf6EAxFree Solvents In SolutesSolventFraction Free Solvents" + "eaeaffeafeaf00.10.20.30.40.50.60.70.80.9Solventfecpf6EAxFree Solvents In SolutesSolventFraction Free Solvents" ] }, "metadata": {}, @@ -436,22 +437,20 @@ { "data": { "image/svg+xml": [ - "eaeaffeafeaf00.511.522.53Solventfecpf6EAxCoordination Compare To Random Distribution Of SolventsSolventCoordination Vs Random" + "eaeaffeafeaf00.511.522.53Solventfecpf6EAxCoordination Compare To Random Distribution Of SolventsSolventCoordination Vs Random" ] }, "metadata": {}, "output_type": "display_data" }, { - "ename": "TypeError", - "evalue": "compare_networking() got an unexpected keyword argument 'rename_solvent_dict'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[12], line 9\u001b[0m\n\u001b[1;32m 6\u001b[0m compare_coordination_vs_random(solutes, rename_solvent_dict\u001b[38;5;241m=\u001b[39mrename)\u001b[38;5;241m.\u001b[39mshow()\n\u001b[1;32m 8\u001b[0m \u001b[38;5;66;03m# slightly different api\u001b[39;00m\n\u001b[0;32m----> 9\u001b[0m \u001b[43mcompare_networking\u001b[49m\u001b[43m(\u001b[49m\u001b[43msolutes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrename_solvent_dict\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrename\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mshow()\n", - "\u001b[0;31mTypeError\u001b[0m: compare_networking() got an unexpected keyword argument 'rename_solvent_dict'" - ] + "data": { + "image/svg+xml": [ + "eaeaffeafeaf00.10.20.30.40.50.60.70.80.9Solute StatusisolatedpairednetworkedFraction of Solutes Isolated, Paired, and NetworkedSoluteSolute Status Fraction" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -463,7 +462,7 @@ "compare_coordination_vs_random(solutes, rename_solvent_dict=rename).show()\n", "\n", "# slightly different api\n", - "compare_networking(solutes, rename_solvent_dict=rename).show()" + "compare_networking(solutes).show()" ] }, { @@ -487,7 +486,7 @@ { "data": { "image/svg+xml": [ - "345691000.10.20.30.40.50.60.7Histogram of Network SizesNetwork SizeFraction of All Networks" + "345691000.10.20.30.40.50.60.7Histogram of Network SizesNetwork SizeFraction of All Networks" ] }, "metadata": {}, @@ -496,7 +495,7 @@ { "data": { "image/svg+xml": [ - "eafecpf6eafecpf600.20.40.60.811.2Solvent Co-Occurrence Matrix0.961.321.321.050.620.391.090.330.0" + "eafecpf6eafecpf600.20.40.60.811.2Solvent Co-Occurrence Matrix0.961.321.321.050.620.391.090.330.0" ] }, "metadata": {}, @@ -505,23 +504,16 @@ { "data": { "image/svg+xml": [ - "34500.20.40.60.81eafecpf6Fraction of Solvents in Shells of Different SizesShell SizeFraction of Total Molecules" + "34500.20.40.60.81eafecpf6Fraction of Solvents in Shells of Different SizesShell SizeFraction of Total Molecules" ] }, "metadata": {}, "output_type": "display_data" }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "hi\n" - ] - }, { "data": { "image/svg+xml": [ - "ea 4fec 0pf6 0ea 3fec 1pf6 0ea 3fec 0pf6 1ea 5fec 0pf6 0ea 4fec 1pf6 0ea 2fec 2pf6 0123400.10.20.30.40.50.6Fractioneafecpf6Top Solvation Shell CompositionsSolvation ShellShell SizeShell Fraction" + "ea 4fec 0pf6 0ea 3fec 1pf6 0ea 3fec 0pf6 1ea 5fec 0pf6 0ea 4fec 1pf6 0ea 2fec 2pf6 0123400.10.20.30.40.50.6Fractioneafecpf6Top Solvation Shell CompositionsSolvation ShellShell SizeShell Fraction" ] }, "metadata": {}, @@ -530,7 +522,7 @@ { "data": { "image/svg+xml": [ - "00.10.20.30.400.511234567051015solvation radiussolvation radiussolvation radiuspf6feceaRadial Distribution Functions of Solute-Solvent Pairseasolute_0solute_0solute_0SolventSolute" + "00.10.20.30.400.511234567051015solvation radiussolvation radiussolvation radiuspf6feceaRadial Distribution Functions of Solute-Solvent PairseaLiLiLiSolventSolute" ] }, "metadata": {},